首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmium isotope composition (187Os/188Os) and concentrations of Os, Ir and Pt are reported for an early Pleistocene section from the ODP Site 849 in the eastern equatorial Pacific. Using the data obtained in this study, the contributions from detrital and extraterrestrial particulate matter to Os concentration and 187Os/188Os of sediment are estimated. Our calculations show that detrital contributions to sedimentary Os are too small (<2%) to significantly shift measured bulk sediment 187Os/188Os away from seawater values. A moderate but significant negative correlation between 187Os/188Os and 3He/188Os indicate that the average particulate extraterrestrial Os flux to this site is 1.21 ± 0.47 pg cm−2 kyr−1, which constitutes ?3% of total Os burial flux. The estimates of detrital and extraterrestrial Os are used to calculate the seawater 187Os/188Os in the early Pleistocene. The most notable features of this early Pleistocene 187Os/188Os record are: (1) glacial-interglacial 187Os/188Os differences are insignificant within errors of estimates, (2) glacial 187Os/188Os values are higher compared to those reported for the late Pleistocene glacials. Comparison of 187Os/188Os values at Site 849 to the late Pleistocene records suggests that average seawater 187Os/188Os change has been modest (∼5%) since the early Pleistocene. Assuming that 187Os/188Os difference between the glacial periods of the late and the early Pleistocene results solely from temperature dependence of weathering rates, it has been calculated that average surface temperature during the late Pleistocene glacials was 0.8 ± 0.2 °C lower than glacials in the early Pleistocene. This inference is consistent with temperature estimates based on a recent study of pCO2 reconstruction in the Pleistocene. This observation based on limited studies of marine 187Os/188Os records seems to suggest that temperature played an important role in influencing chemical weathering during the Pleistocene glacials. However, more studies are needed to confirm if this temperature-weathering feedback was operational throughout the Pleistocene. A significant down core Ir-3He co-variation coupled with similar burial fluxes of Ir at Site 849 and at LL44 GPC-3 in the north Pacific point to the utility of Ir concentration as a point paleoflux tracer. However, a twofold difference in Ir burial fluxes between the eastern and the western equatorial Pacific suggests that calibration in space and time is required to use Ir concentration as a robust indicator of paleoflux through time. Significant co-variation of concentrations of Os and total alkenone during the glacials coupled with lighter δ13C of benthic foraminifera indicates that productivity and carbon burial played a dominant control on scavenging of Os at Site 849. In a broader context, this data set encourages future investigation of response of PGE behavior to paleoceanographic processes.  相似文献   

2.
New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg cm−2 kyr−1, respectively. Average Ir/3He and Ir/xs230Thinitial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Thinitial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.  相似文献   

3.
Picrites from the neovolcanic zones in Iceland display a range in 187Os/188Os from 0.1297 to 0.1381 (γOs = + 2.1 to +8.7) and uniform 186Os/188Os of 0.1198375 ± 32 (2σ). The value for 186Os/188Os is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398 ± 16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in 186Os/188Os and 187Os/188Os from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not.A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently mixes with the present-day convecting MORB mantle during ascent and melting. This multistage mixing scenario requires convective isolation in the deep mantle for hundreds of million years or more to maintain these compositionally distinct hybrid sources. The 3He/4He of lavas derived from the Iceland plume changed over time, from a maximum of 50 Ra at 60 Ma, to approximately 25-27 Ra at present. The changes are coupled with distinct compositional gaps between the different aged lavas when 3He/4He is plotted versus various geochemical parameters such as 143Nd/144Nd and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal of U and Th in their mantle sources. Instead their He isotopic compositions reflect mixtures of heterogeneous materials formed at different times with different U and Th concentrations. This hybridization is likely prevalent in all ocean island lavas derived from deep mantle sources.  相似文献   

4.
We report osmium concentrations and isotopic compositions of 40 groundwater samples from the Bengal plain. Groundwaters have Os concentrations (16.9-191.5 pg/kg), about 5-10 times higher than those published for most rivers or seawater. 187Os/188Os varies widely (from 0.96 to 2.79) and is related to the isotopic signatures of the sediments constituting local aquifers. Os contents are correlated with those of soluble elements such as Sr, Mg, and Ca, suggesting that differing extents of solid-solution interaction explain most of the variation in measured Os concentrations. The covariation between Os and Sr allows us to estimate the mean Os content of Bengal groundwater (∼70 pg/kg). This concentration is too low to allow Bengal groundwater to significantly influence the marine Os isotopic composition, if likely fresh groundwater discharge rates to the Bay of Bengal are assumed. However, if Bengal groundwater Os concentrations are typical, the global Os groundwater flux would be expected to be around 180 kg/year, making it the second largest input of Os to the ocean after the river flux. Including this flux in the current Os marine budget, and assuming that this and other fluxes have remained constant with time, would decrease the calculated residence time of Os in the ocean by about 30%.  相似文献   

5.
Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the “mantle zoo” may contain more reservoirs than previously envisaged.Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/188Os ([Os] typically ? 1-2 ppm, 187Os/188Os ? 0.3729; this study). This population is thought to represent metasomatic sulphide.Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ? 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulphides armoured within silicates are exposed to the melt through continued partial melting will enclosed sulphides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all of the metasomatic sulphide, followed by (ii) the incorporation of small amounts of armoured sulphide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs.  相似文献   

6.
Os isotope ratios in pyrrhotite-bearing pelitic rocks of the ∼1.85 Ga Virginia Formation are variable, with perturbations linked to the emplacement of the ∼1.1 Ga Duluth Complex. Pyrrhotite in footwall rocks of the contact aureole show evidence for a mixing event at 1.1 Ga involving a low 187Os/188Os fluid. However, because rocks with perturbed pyrrhotite Os isotope ratios occur 1½ km or more from the Duluth Complex, the fluid is unlikely to have been of magmatic origin. Fluid inclusions in layer-parallel quartz veins provide evidence of the involvement of a boiling fluid at temperatures between ∼300 and 400 °C. Analyses of fluid inclusions via LA-ICP-MS show that the fluids contain up to 1.7 wt% Na, 1.1 wt% K, 4330 ppm Fe, 2275 ppm Zn, and 415 ppm Mg. The veins also contain pyrite or pyrrhotite, plus minor amounts of chalcopyrite, bornite, pentlandite, and sphalerite. The Re-Os isotopic ratios of pyrite from the veins indicate that they crystallized from low 187Os/188Os fluids (<0.2). δ18O values of vein quartz range from 7.7‰ to 9.5‰, consistent with an origin involving fluid with a relatively low δ18O value between 2‰ and 5‰. Meteoric water with such a low δ18O value could have interacted with the igneous rocks of the Complex and would have acquired Os with a low 187Os/188Os ratio. Strongly serpentinized olivine-rich rocks of the Complex are commonly characterized by such low δ18O values and we propose that the fluid involved in serpentinization was also responsible for the perturbation of the Os isotopic system recorded by pyrrhotite in the Virginia Formation. Two important observations are that only pyrrhotite-bearing assemblages in the contact aureole show isotopic perturbation and that intervals showing Os exchange are spatially restricted, and not uniformly distributed. Os exchange and mixing has occurred only where temperatures were sufficient to convert pyrite to pyrrhotite, and where time-integrated water-rock ratios in the aureole were high enough to provide a supply of Os.Troctolitic and gabbroic rocks of the Partridge River Intrusion, Duluth Complex, are characterized by Os isotope ratios that are indicative of variable degrees of crustal contamination (γOs values of ∼0-543). Xenoliths of carbonaceous and sulfidic pelitic rocks of the Virginia Formation found in the igneous rocks provide evidence that Os was released by organic matter and pyrite in the sedimentary rocks and assimilated by mantle-derived magma. However, residual pyrrhotite produced as a result of pyrite breakdown in the xenoliths is characterized by 187Os/188Os ratios that are much lower than anticipated and similar to those of pyrrhotite in the contact aureole. The Os exchange and addition shown by pyrrhotite in the xenoliths highlight an unusual cycle of Re-Os liberation during devolatilization, kerogen maturation, and pyrite to pyrrhotite conversion (processes that contribute to magma contamination), followed by Os uptake by pyrrhotite during back reaction involving magma and/or fluid characterized by a relatively low 187Os/188Os ratio. The extreme Os uptake recorded by pyrrhotite in the xenoliths, as well as the lesser degree of uptake recorded by pyrrhotite in the contact aureole, is in line with the high Os diffusivity in pyrrhotite experimentally determined by Brenan et al. (2000). Our data confirm that Os isotope ratios in pyrrhotite-bearing rocks may be readily perturbed. For this reason caution should be exercised in the interpretation of Os isotope ratios in rocks where pyrrhotite may be the primary host of Os.  相似文献   

7.
The marine osmium isotope record   总被引:3,自引:0,他引:3  
Over the past decade the marine osmium isotope record has been developed into a new tracer in palaeoceanographic research. Several analytical developments, particularly in the past few years, have significantly increased our ability to study the behaviour of osmium in the surficial environment. The 187Os/188Os and osmium concentration of seawater, river water, rain, and hydrothermal vent fluids have been measured directly. Recently, the behaviour of osmium in estuaries–critical for estimating the marine residence time of osmium–has been studied. Our knowledge of the surficial osmium cycle has thus significantly improved. In addition, reconstructions of past variations in the marine 187Os/188Os recently have been extended back into the Mesozoic. This review attempts to summarize our current understanding of the marine osmium system–present and past. The 187Os/188Os of seawater during the Cenozoic to first order mimics the marine 87Sr/86Sr record. It is therefore tempting to interpret both records as reflecting increased input of radiogenic osmium and strontium resulting from enhanced continental weathering regulated by climatic/tectonic processes. However, the marine osmium isotope system differs fundamentally from the marine strontium isotope system. This review emphasizes three important differences. First, large impacts are capable of resetting the 187Os/188Os to unradiogenic values without significantly affecting the marine strontium system. Second, organic‐rich sediments are characterized by high 187Re/188Os; resulting 187Os/188Os ingrowth‐trajectories are similar to the average slope of the Cenozoic 187Os/188Os seawater record. Trends towards more radiogenic 187Os/188Os seawater therefore can be caused by weathering of organic‐rich sediments at a constant rate. Third, the marine residence time of osmium is sufficiently short to capture short‐periodic (glacial‐interglacial) fluctuations that are inaccessible to the buffered marine strontium isotope system. This offers the opportunity to discriminate between high‐frequency (climatic) and low‐frequency (tectonic) forcing.  相似文献   

8.
Eighteen picrites (MgO > 13 wt.%) and three related basalts from six Hawaiian volcanoes were analyzed for 187Os/188Os and 186Os/188Os. Variations in these ratios reflect long-term Re/Os and Pt/Os differences in the mantle source regions of these volcanoes. 187Os/188Os ratios vary from ∼0.129 to 0.136, consistent with the range defined by previous studies of Hawaiian picrites and basalts. Samples with lower 187Os/188Os are mainly from Kea trend volcanoes (Mauna Kea and Kilauea), and the more radiogenic samples are mainly from Loa trend volcanoes (Mauna Loa, Hualalai, Koolau and Loihi). As previously suggested, differences in 187Os/188Os between volcanic centers are most consistent with the presence of variable proportions of recycled materials and/or pyroxenitic components in the Hawaiian source.186Os/188Os ratios vary from 0.1198332 ± 26 to 0.1198480 ± 20, with some samples having ratios that are significantly higher than current estimates for the ambient upper mantle. Although the range of 186Os/188Os for the Hawaiian suite is consistent with that reported by previous studies, the new data reveal significant heterogeneities among picrites from individual volcanoes. The linear correlation between 187Os/188Os and 186Os/188Os reported by a previous study is no longer apparent with the larger dataset. The postulated recycled materials and pyroxenites responsible for the dominant variations in 187Os/188Os are likely not responsible for the variations in 186Os/188Os. Such materials are typically characterized by both insufficiently high Os concentrations and Pt/Os to account for the 186Os/188Os heterogeneities. The lack of correspondence between 186Os/188Os variations and the Kea and Loa trends supports this conclusion.The primary cause of 186Os/188Os variations are evaluated within the framework of two mixing scenarios: (1) metasomatic transport of Pt and/or 186Os-rich Os into some portions of the Hawaiian source, and (2) interaction between an isotopically complex plume source with a common, Os- and 186Os-enriched reservoir (COs). Both scenarios require large scale, selective transport of Pt, Re and/or Os. Current estimates of HSE concentrations in the mantle source of these rocks, however, provide little evidence for either process, so the dominant cause of the 186Os/188Os variations remains uncertain.  相似文献   

9.
We report new Os-Pb-Hf isotope data for a suite of alkaline to basaltic (nephelinites, basanites, olivine tholeiites to quartz-tholeiites) lavas from the Miocene Vogelsberg (Germany), the largest of the rift-related continental volcanic complexes of the Central European Volcanic Province (CEVP). 187Os/188Os in primitive (high-MgO) alkaline lavas show a much wider range than has been observed in alkaline basalts and peridotite xenoliths from elsewhere in the CEVP, from ratios similar to those in modern MORB and OIB (0.1260-0.1451; 58.9-168 ppt Os) to more radiogenic ratios (0.1908 and 0.2197; 27.6-15.1 ppt Os). Radiogenic Os is associated with high εHf and εNd, low 87Sr/86Sr and does not correlate with Mg or incompatible trace elements (e.g. Ce/Pb), suggesting the presence of a radiogenic endmember in the mantle rather than crustal contamination as the source of radiogenic Os. This contrasts with another high-Mg alkaline lava characterized by highly radiogenic 187Os/188Os (0.4344, 10.3 ppt Os), lower εHf and εNd, higher 87Sr/86Sr, and Pb isotope signatures than the other alkaline lavas with similar trace element composition suggestive of contamination with crustal material. Hafnium (εHf: +8.9 to +5.0) and Pb isotope compositions (206Pb/204Pb: 19.10-19.61; 207Pb/204Pb: 15.56-15.60) of the alkaline rocks fall within the range of enriched MORB and some OIB. The Vogelsberg tholeiites show even more diverse 187Os/188Os, ranging from 0.1487 in Os-rich olivine tholeiite (31.7 ppt) to ratios as high as 0.7526 in other olivine-tholeiites and in quartz-tholeiites with lower Os concentrations (10.3-2.0 ppt). Low-187Os/188Os tholeiites show Pb-Hf isotope ratios (206Pb/204Pb:18.81; 207Pb/204Pb: 15.61; εHf: +2.7) that are distinct from those in alkaline lavas with similar 187Os/188Os and originate from a different mantle source. By contrast, the combination of radiogenic Os and low 206Pb/204Pb and εHf in the other tholeiites probably reflects crustal contamination.The association at Vogelsberg of primitive alkaline and tholeiitic lavas with a range of MORB- to OIB-like Os-Pb-Hf-Nd-Sr isotopic characteristics requires at least two asthenospheric magma sources. This is consistent with trace element modelling which suggests that the alkaline and tholeiitic parent magmas represent mixtures of melts from garnet and spinel peridotite sources (both with amphibole), implying an origin of the magmas in the garnet peridotite-spinel peridotite transition zone, probably at the asthenosphere-lithosphere interface. We propose that uncontaminated Vogelsberg lavas originated in ‘metasomatized’ mantle, involving a 3-stage model: (1) early carbonatite metasomatism several 10-100 Ma before the melting event (2) deposition of low-degree asthenospheric melts from carbonated peridotite at the lithosphere-asthenosphere thermal boundary produces hydrous amphibole-bearing veins or patches, and (3) remobilization of this modified lithospheric mantle into other asthenospheric melts passing through the same area later. In keeping with ‘metasomatized’ mantle models for other continental basalt provinces, we envisage that stage (2) is short-lived (few Ma), thus producing a prominent lithospheric trace element signature without changing the asthenospheric isotopic signatures. Models of this type can explain the peculiar mix of lithospheric (prominent depletions of Rb and K) and asthenospheric (OIB-like high 187Os/188Os, 143Nd/144Nd and 176Hf/177Hf) signatures observed in the Vogelsberg and many other continental basalt suites.  相似文献   

10.
This study focuses on the origin of the Os isotope heterogeneities and the behaviour of Os and Re during melt percolation and partial melting processes in the mantle sequence of the Troodos Ophiolite Complex. The sequence has been divided into an eastern (Unit 1) and a western part (Unit 2) (Batanova and Sobolev, 2000). Unit 1 consists mainly of spinel-lherzolites and a minor amount of dunites, which are surrounded by cpx-bearing harzburgites. Unit 2 consists of harzburgites, dunites, and contains chromitite deposits.Unit 1 (187Os/188Os: 0.1169 to 0.1366) and Unit 2 (187Os/188Os 0.1235 to 0.1546) peridotites both show large ranges in their Os isotopic composition. Most of the 187Os/188Os ratios of Unit 1 lherzolites and harzburgites are chondritic to subchondritic, and this can be explained by Re depletion during ancient partial melting and melt percolation events. The old Os isotope model ages (>800 Ma) of some peridotites in a young ophiolitic mantle show that ancient Os isotopic heterogeneities can survive in the Earth upper mantle. Most harzburgites and dunites of Unit 2 have suprachondritic 187Os/188Os ratios. This is the result of the addition of radiogenic Os during a younger major melt percolation event, which probably occurred during the formation of the Troodos crust 90 Ma ago.Osmium concentrations tend to decrease from spinel-lherzolites (4.35 ± 0.2 ng/g) to harzburgites (Unit 1: 4.06 ± 1.12 ng/g; Unit 2: 3.46 ± 1.38 ng/g) and dunites (Unit 1: 2.71 ± 0.84 ng/g; Unit 2: 1.85 ± 1.20 ng/g). Therefore, this element does not behave compatibly during melt percolation as it is observed during partial melting, but becomes dissolved and mobilized by the percolating melt. The Os contents and Re/Os ratios in the mantle peridotites can be explained if they represent mixing products of old depleted mantle with cpx- and opx-veins, which are crystallization products of the percolating melt. This mixing occurred during the melting of a continuously fluxed mantle in a supra-subduction zone environment.This study shows that Unit 1 and Unit 2 of the Troodos mantle section have a complex and different evolution. However, the Os isotopic characteristics are consistent with a model where the harzburgites and dunites of both units belong to the same melting regime producing the Troodos oceanic crust.  相似文献   

11.
Sulphide-bearing diamonds recovered from the ∼20 Ma Ellendale 4 and 9 lamproite pipes in north-western Australia were investigated to determine the nitrogen aggregation state of the diamonds and Re-Os isotope geochemistry of the sulphide inclusions. The majority of diamond studies have been based on diamonds formed in the sub-continental lithospheric mantle (SCLM) below stable cratons, whereas the Ellendale lamproites intrude the King Leopold Orogen, south of the Kimberley craton. The sulphide inclusions consist of pyrrhotite-pentlandite-chalcopyrite assemblages, and can be divided into peridotitic and eclogitic parageneses on the basis of their Ni and Os contents. A lherzolitic paragenesis for the high-Ni sulphide inclusions is suggested from their Re and Os concentrations. Regression analysis of the Re-Os isotope data for the lherzolitic sulphides yields an age of 1426 ± 130 Ma, with an initial 187Os/188Os ratio of 0.1042 ± 0.0034. The upper limit of the uncertainty on the 187Os/188Os initial ratio gives a Re depletion age of 2.96 Ga, indicating the presence of SCLM beneath Ellendale since at least the Mesoarchaean, with the lherzolitic diamond-forming event much younger and unrelated to the craton keel stabilisation. The nitrogen aggregation state of the diamonds and calculated mantle residence temperatures suggest an origin and storage of the Ellendale diamonds in a stable cratonic SCLM, consistent with the King Leopold Orogen being cratonised by about 1.8 Ga. The diamonds do not show evidence for pervasive deformation or platelet degradation, which suggests that the diamonds had a relatively undisturbed 1.4 billion year mantle storage history.  相似文献   

12.
Rhenium (Re) is one of the least abundant elements in Earth, averaging 0.28 ppb in the primitive mantle. The unique occurrence of rheniite ReS2 (74.5 wt% of Re) in Kudryavy volcano precipitates raises questions about recycling of Re-rich reservoirs within the Kurile-Kamchatka volcanic Island arc setting. The sources of this unique Re enrichment have been inferred from studies of Re-Os isotope systematic and trace elements in volcanic gases, sulphide precipitates and host volcanic rocks. The fumarolic gas condensates are enriched in hydrophile trace elements relative to fluid-immobile elements and exhibit high Ba/Nb (133-204), Rb/Y (16-406) and Th/Zr (0.01-0.25) ratios. They are characterised by high Re (7-210 ppb) and Os abundances (0.4-0.9 ppb), with 187Os/188Os ratios in a range 0.122-0.152. This Os isotopic compositional range is similar to that of the peridotite xenoliths from the metasomatised mantle wedge above the subducted Pacific plate, the radiogenic isotopic signature of which is probably due to radiogenic addition from a slab-derived fluid.Re- and Os-rich sulphide and oxide minerals precipitate from volcanic gases within fumarolic fields. Molybdenite (MoS2), powellite (CaMoO4) and cannizzarite (Pb4Bi6S13) contain 1.5-1.7 wt%, 10 ppm, and 65-252 ppb of Re, respectively. Both molybdenite and rheniite contain normal Os concentrations, with total Os abundances in a range from 0.6 to 3.1 ppm for molybdenite, and 2.3-24.3 ppb for the rheniite samples. Repeated analyses of osmium isotope ratios for two rheniite samples form a best-fit line with an initial 187Os/188Os ratio of 0.32 ± 0.15 and an age of 79 ± 11 yr, which is the youngest age ever measured in natural samples. The high Re contents in molybdenite and rheniite led to high radiogenic 187Os values, even in the limited period of time, with 187Os/188Os ratios up to 3.3 for molybdenite and up to 4.4 for rheniite.The Os isotopic compositions of andesite-basaltic rocks from the Kudryavy volcano (187Os/188Os up to 0.326) are more radiogenic than those of residual peridotites and fumarolic gas condensates that are mainly constituted from magmatic vapor. Such radiogenic values can be attributed either to the addition of a radiogenic Os-rich subduction component to the depleted mantle, or to the assimilation of older dacitic caldera walls (187Os/188Os = 0.6) during arc magma ascent and emplacement. The latter hypothesis is supported by the correlation between 187Os/188Os ratio and indicators of fractionation such as MgO or Ni, and by low contents of potentially hydrophile trace elements such as Ba, Rb and Th relative to fluid-immobile elements such as Nb, Zr and Y. The high Re flux in the Kudryavy volcano (estimated at ∼46 kg/yr) can be explained by remobilisation of Re by Cl-rich water from an underplated mantle wedge and subducted organic-rich sediments of the Pacific plate.  相似文献   

13.
Podiform chromite deposits occur in the mantle sequences of many ophiolites that were formed in supra-subduction zone (SSZ) settings. We have measured the Re-Os isotopic compositions of the major chromite deposits and associated mantle peridotites of the Dongqiao Ophiolite in the Bangong-Nujiang suture, Tibet, to investigate the petrogenesis of these rocks and their genetic relationships.The 187Os/188Os ratios of the chromite separates define a narrow range from 0.12318 to 0.12354, less variable than those of the associated peridotites. Previously-reported 187Os/188Os ratios of the Os-rich alloys enclosed in the chromitites define two clusters: 0.12645 ± 0.00004 (2 s; n = 145) and 0.12003 to 0.12194. The ultra-depleted dunites have much lower 187Os/188Os (0.11754, 0.11815), and the harzburgites show a wider range from 0.12107 to 0.12612. The average isotopic composition of the chromitites (187Os/188Os: 0.12337 ± 0.00001) is low compared with the carbonaceous chondrite value (187Os/188Os: 0.1260 ± 0.0013) and lower than the average value measured for podiform chromitites worldwide (0.12809 ± 0.00085). In contrast, the basalts have higher 187Os/188Os, ranging from 0.20414 to 0.38067, while the plagioclase-bearing harzburgite and cumulates show intermediate values of 187Os/188Os (0.12979 ~ 0.14206). Correspondingly, the basalts have the highest 187Re/188Os ratios, up to 45.4 ± 3.2, and the chromites have the lowest 187Re/188Os ratios, down to 0.00113 ± 0.00008. We suggest that melts/fluids, derived from the subducting slab, triggered partial melting in the overlying mantle wedge and added significant amounts of radiogenic Os to the peridotites. Mass-balance calculations indicate that a melt/mantle ratio of approximately 15:1 (melt: 187Re/188Os: 45.4, 187Os/188Os: 0.34484; mantle peridotite: 187Re/188Os: 0.0029, 187Os/188Os: 0.11754) is necessary to increase the Os isotopic composition of the chromitite deposits to its observed average value. This value implies a surprisingly low average melt/mantle ratio during the formation of the chromitite deposits. The percolating melts probably were of variable isotopic composition. However, in the chromitite pods the Os from many melts was pooled and homogenized, which is why the chromitite deposits show such a small variation in their Os isotopic composition. The results of this study suggest that the 187Os/188Os ratios of chromitites may not be representative of the DMM, but only reflect an upper limit. Importantly, the Os-isotope compositions of chromitites strongly suggest that such deposits can be formed by melt/mantle mixing processes.  相似文献   

14.
Whale carcasses (whale falls) deposited on the deep seafloor are associated with a distinctive biotic community. A fossil whale bone recovered from São Paulo Ridge, South Atlantic Ocean, during cruise YK13–04 Leg 1 of R/V Yokosuka was covered by a ferromanganese (Fe–Mn) crust approximately 9 mm thick. Here, we report an age constraint for this fossil bone on the basis of Os isotopic stratigraphy (187Os/188Os ratio) of the Fe–Mn crust. Major‐ and trace‐element compositions of the crust are similar to those of Fe–Mn crusts of predominantly hydrogenous origin. Rare earth element concentrations in samples of the crust, normalized with respect to Post‐Archean average Australian Shale, exhibit flat patterns with positive Ce and negative Y anomalies. These results indicate that the Fe–Mn crust consists predominantly of hydrogenous components and that it preserves the Os isotope composition of seawater at the time of its deposition. 187Os/188Os ratios of three Fe–Mn crust samples increased from 0.904 to 1.068 in ascending stratigraphic order. The value of 1.068 from the surface slice (0–3 mm depth in the crust) was identical to that of present‐day seawater within error (~1.06). The value of 0.904 from the basal slice (6–9 mm) equaled seawater values from ca. 4–5 Ma. Because it is unknown how long the bone lay on the seafloor before the Fe–Mn crust was deposited, the Os stratigraphic age of ca. 5 Ma is a minimum age of the fossil. This is the first application, to our knowledge, of marine Os isotope stratigraphy for determining the age of a fossil whale bone. Such data may offer valuable insights into the evolution of the whale‐fall biotic community.  相似文献   

15.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

16.
Spinel lherzolite xenoliths from Mont Briançon, French Massif Central, retain evidence for multiple episodes of melt depletion and melt/fluid infiltration (metasomatism). Evidence for primary melt depletion is still preserved in the co-variation of bulk-rock major elements (MgO 38.7-46.1 wt.%; CaO 0.9-3.6 wt.%), and many samples yield unradiogenic bulk-rock Os isotope ratios (187Os/188Os = 0.11541-0.12626). However, many individual xenoliths contain interstitial glasses and melt inclusions that are not in equilibrium with the major primary minerals. Incompatible trace element mass balance calculations demonstrate that metasomatic components comprise a significant proportion of the bulk-rock budget for these elements in some rocks, ranging to as much as 25% of Nd and 40% of Sr Critically, for Re-Os geochronology, melt/fluid infiltration is accompanied by the mobilisation of sulfide. Consequently, bulk-rock isotope measurements, whether using lithophile (e.g. Rb-Sr, Sm-Nd) or siderophile (Re-Os) based isotope systems, may only yield a perturbed and/or homogenised average of these multiple events.Osmium mass balance calculations demonstrate that bulk-rock Os in peridotite is dominated by contributions from two populations of sulfide grain: (i) interstitial, metasomatic sulfide with low [Os] and radiogenic 187Os/188Os, and (ii) primary sulfides with high [Os] and unradiogenic 187Os/188Os, which have been preserved within host silicate grains and shielded from interaction with transient melts and fluid. The latter can account for >97% of bulk-rock Os and preserve geochronological information of the melt from which they originally precipitated as an immiscible liquid. The Re-depletion model ages of individual primary sulfide grains preserve evidence for melt depletion beneath the Massif Central from at least 1.8 Gyr ago despite the more recent metasomatic event(s).  相似文献   

17.
Os Isotopes and the Origin of the Tasmanian Dolerites   总被引:3,自引:0,他引:3  
New Os isotope data obtained for oxides separated from samplesof the Jurassic dolerites of Tasmania (Australia) are used toconstrain the petrogenesis of the Ferrar continental flood basaltprovince. It is proposed here that the unradiogenic initialOs ratio (187Os/188Os = 0·145 ± 0·049 2  相似文献   

18.
We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ∼600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks.The significant within-sample variability of 187Os/188Os and correlation with 187Re/188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.  相似文献   

19.
High-precision Pt-Re-Os and Sm-Nd isotope and highly siderophile element (HSE) and rare earth element (REE) abundance data are reported for two 2.7 b.y. old komatiite lava flows, Tony’s flow (TN) from the Belingwe greenstone belt, Zimbabwe, and the PH-II flow (PH) from Munro Township in the Abitibi greenstone belt, Canada. The emplaced lavas are calculated to have contained ∼25% (TN) and ∼28% (PH) MgO. These lavas were derived from mantle sources characterized by strong depletions in highly incompatible lithophile trace elements, such as light REE (Ce/SmN = 0.64 ± 0.02 (TN) and 0.52 ± 0.01 (PH), ε143Nd(T) = +2.9 ± 0.2 in both sources). 190Pt-186Os and 187Re-187Os isochrons generated for each flow yield ages consistent with respective emplacement ages obtained using other chronometers. The calculated precise initial 186Os/188Os = 0.1198318 ± 3 (TN) and 0.1198316 ± 5 (PH) and 187Os/188Os = 0.10875 ± 17 (TN) and 0.10873 ± 15 (PH) require time-integrated 190Pt/188Os and 187Re/188Os of 0.00178 ± 11 and 0.407 ± 8 (TN) and 0.00174 ± 18 and 0.415 ± 5 (PH). These parameters, which by far represent the most precise and accurate estimates of time-integrated Pt/Os and Re/Os of the Archean mantle, are best matched by those of enstatite chondrites. The data also provide evidence for a remarkable similarity in the composition of the sources of these komatiites with respect to both REE and HSE. The calculated absolute HSE abundances in the TN and PH komatiite sources are within or slightly below the range of estimates for the terrestrial Primitive Upper Mantle (PUM). Assuming a chondritic composition of the bulk silicate Earth, the strong depletions in LREE, yet chondritic Re/Os in the komatiite sources are apparently problematic because early Earth processes capable of fractionating the LREE might also be expected to fractionate Re/Os. This apparent discrepancy could be reconciled via a two-stage model, whereby the moderate LREE depletion in the sources of the komatiites initially occurred within the first 100 Ma of Earth’s history as a result of either global magma ocean differentiation or extraction and subsequent long-term isolation of early crust, whereas HSE were largely added subsequently via late accretion. The komatiite formation, preceded by derivation of basaltic magmas, was a result of second-stage, large-degree dynamic melting in mantle plumes.  相似文献   

20.
We present Os and Sr isotopes and Mg, Os, and Sr concentrations for ridge-crest high-temperature and diffuse hydrothermal fluids, plume fluids and ridge-flank warm spring fluids from the Juan de Fuca Ridge. The data are used to evaluate the extent to which (1) the high- and low-temperature hydrothermal alteration of mid-ocean ridge basalts (MORBs) provides Os to the deep oceans, and (2) hydrothermal contributions of non-radiogenic Os and Sr to the oceans are coupled. The Os and Sr isotopic ratios of the high-temperature fluids (265-353 °C) are dominated by basalts (187Os/188Os = 0.2; 87Sr/86Sr = 0.704) but the concentrations of these elements are buffered approximately at their seawater values. The 187Os/188Os of the hydrothermal plume fluids collected ∼1 m above the orifice of Hulk vent is close to the seawater value (=1.05). The low-temperature diffuse fluids (10-40 °C) associated with ridge-crest high-temperature hydrothermal systems on average have [Os] = 31 fmol kg−1, 187Os/188Os = 0.9 and [Sr] = 86 μmol kg−1, 87Sr/86Sr = 0.709. They appear to result from mixing of a high-temperature fluid and a seawater component. The ridge-flank warm spring fluids (10-62 °C) on average yield [Os] = 22 fmol kg−1, 187Os/188Os = 0.8 and [Sr] = 115 μmol kg−1, 87Sr/86Sr = 0.708. The data are consistent with isotopic exchange of Os and Sr between basalt and circulating seawater during low-temperature hydrothermal alteration. The average Sr concentration in these fluids appears to be similar to seawater and consistent with previous studies. In comparison, the average Os concentration is less than seawater by more than a factor of two. If these data are representative they indicate that low-temperature alteration of MORB does not provide adequate non-radiogenic Os and that another source of mantle Os to the oceans must be investigated. At present, the magnitude of non-radiogenic Sr contribution via low-temperature seawater alteration is not well constrained. If non-radiogenic Sr to the oceans is predominantly from the alteration of MORB, our data suggest that there must be a different source of non-radiogenic Os and that the Os and Sr isotope systems in the oceans are decoupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号