首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

3.
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.  相似文献   

4.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


5.
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.  相似文献   

6.
Most studies agree that the dissolution rate of aluminosilicates in the presence of oxalic and other simple carboxylic acids is faster than the rate with non-organic acid under the same pH. However, the mechanisms by which organic ligands enhance the dissolution of minerals are in debate. The main goal of this paper was to study the mechanism that controls the dissolution rate of kaolinite in the presence of oxalate under far from equilibrium conditions (−29 < ΔGr < −18 kcal mol−1). Two types of experiments were performed: non-stirred flow-through dissolution experiments and batch type adsorption isotherms. All the experiments were conducted at pH 2.5-3.5 in a thermostatic water-bath held at a constant temperature of 25.0, 50.0 or 70.0 ± 0.1 °C. Kaolinite dissolution rates were obtained based on the release of silicon and aluminum at steady state. The results show good agreement between these two estimates of kaolinite dissolution rate. At constant temperature, there is a general trend of increase in the overall dissolution rate as a function of the total concentration of oxalate in solution. The overall kaolinite dissolution rates in the presence of oxalate was up to 30 times faster than the dissolution rate of kaolinite at the same temperature and pH without oxalate as was observed in our previous study. Therefore, these rate differences are related to differences in oxalate and aluminum concentrations. Within the experimental variability, the oxalate adsorption at 25, 50, and 70 °C showed the same dependence on the sum of the activities of oxalate and bioxalate in solution. The change of oxalate concentration on the kaolinite surface (Cs,ox) as a function of the sum of the activities of the oxalate and bioxalate in solution may be described by the general adsorption isotherm:
  相似文献   

7.
Pyrite plays the central role in the environmental issue of acid rock drainage. Natural weathering of pyrite results in the release of sulphuric acid which can lead to further leaching of heavy and toxic metals from other associated minerals. Understanding how pyrite reacts in aqueous solution is critical to understanding the natural weathering processes undergone by this mineral. To this end an investigation of the effect of solution redox potential (Eh) and various anions on the rate of pyrite leaching under carefully controlled conditions has been undertaken.Leaching of pyrite has been shown to proceed significantly faster at solution Eh of 900 mV (SHE) than at 700 mV, at pH 1, for the leach media of HCl, H2SO4 and HClO4. The predominant effect of Eh suggests electrochemical control of pyrite leaching with similar mechanism(s) at Eh of 700 and 900 mV albeit with different kinetics. Leach rates at 700 mV were found to decrease according to HClO4 > HCl > H2SO4 while at 900 mV the leach rate order was HCl > HClO4 > H2SO4. Solution Fe3+ activity is found to continually increase during all leaches; however, this is not accompanied by an increase in leach rate.Synchrotron based photoemission electron microscopy (PEEM) measurements showed a localised distribution of adsorbed and oxidised surface species highlighting that pyrite oxidation and leaching is a highly site specific process mediated by adsorption of oxidants onto specific surface sites. It appears that rates may be controlled, in part, by the propensity of acidic anions to bind to the surface, which varies according to , thus reducing the reactive or effective surface area. However, anions may also be involved in specific reactions with surface leach products. Stoichiometric dissolution data (Fe/S ratio), XPS and XRD data indicate that the highest leach rates (in HCl media at 900 mV Eh) correlate with relatively lower surface S abundance. Furthermore, there are indications that solution Cl assists oxidation especially at higher Eh through the prevention of surface S0 buildup at reactive surface sites.  相似文献   

8.
We present the results of an experimental study into the sulfidation of magnetite to form pyrite/marcasite under hydrothermal conditions (90-300 °C, vapor saturated pressures), a process associated with gold deposition in a number of ore deposits. The formation of pyrite/marcasite was studied as a function of reaction time, temperature, pH, sulfide concentration, solid-weight-to-fluid-volume ratio, and geometric surface area of magnetite in polytetrafluoroethylene-lined autoclaves (PTFE) and a titanium and stainless steel flow-through cell. Marcasite was formed only at pH21°C <4 and was the dominant Fe disulfide at pH21°C 1.11, while pyrite predominated at pH21°C >2 and formed even under basic conditions (up to pH21°C 12-13). Marcasite formation was favored at higher temperatures. Fine-grained pyrrhotite formed in the initial stage of the reaction together with pyrite in some experiments with large surface area of magnetite (grain size <125 μm). This pyrrhotite eventually gave way to pyrite. The transformation rate of magnetite to Fe disulfide increased with decreasing pH (at 120 °C; pH120°C 0.96-4.42), and that rate of the transformation increased from 120 to 190 °C.Scanning electron microscope (SEM) imaging revealed that micro-pores (0.1-5 μm scale) existed at the reaction front between the parent magnetite and the product pyrite, and that the pyrite and/or marcasite were euhedral at pH21°C <4 and anhedral at higher pH. The newly formed pyrite was micro-porous (0.1-5 μm); this micro-porosity facilitates fluid transport to the reaction interface between magnetite and pyrite, thus promoting the replacement reaction. The pyrite precipitated onto the parent magnetite was polycrystalline and did not preserve the crystallographic orientation of the magnetite. The pyrite precipitation was also observed on the PTFE liner, which is consistent with pyrite crystallizing from solution. The mechanism of the reaction is that of a dissolution-reprecipitation reaction with the precipitation of pyrite being the rate-limiting step relative to magnetite dissolution under mildly acidic conditions (e.g., pH155°C 4.42).The experimental results are in good agreement with sulfide phase assemblage and textures reported from sulfidized Banded Iron Formations: pyrite, marcasite and pyrrhotite have been found to exist or co-exist in different sulfidized Banded Iron Formations, and the microtextures show no evidence of sub-μm-scale pseudomorphism of magnetite by pyrite.  相似文献   

9.
The maximum concentration of the majority of the trace metals in the leachates from shake and column test of lignite fly ash (LFA) was within the prescribed limits; however, total dissolved solids, total hardness, cations and anions (except K+), being above the prescribed limits, may lead to the increase in the hardness and salinity in the soil on the disposal of LFA. Present generation of huge amount of fly ash from thermal power plants (TPPs) is a big challenge concerning contamination of soil, crop produce and surface and ground water bodies due to the presence of some of the toxic trace metals in it. The leaching behavior of alkaline LFA (pH, 10.94), from TPP of Neyveli Lignite Corporation (NLC), India, was investigated by shake and column tests using water and sodium acetate buffer. The leaching of trace metals from LFA was governed by their concentrations, association with the ash particles, leaching duration and pH of the leachate (most influencing parameter). The leaching of metals followed the order: buffer column > aqueous column > aqueous shake > buffer shake test.  相似文献   

10.
Kinetics of arsenopyrite oxidative dissolution by oxygen   总被引:1,自引:0,他引:1  
We used a mixed flow reactor system to determine the rate and infer a mechanism for arsenopyrite (FeAsS) oxidation by dissolved oxygen (DO) at 25 °C and circumneutral pH. Results indicate that under circumneutral pH (6.3-6.7), the rate of arsenopyrite oxidation, 10−10.14±0.03 mol m−2 s−1, is essentially independent of DO over the geologically significant range of 0.3-17 mg L−1. Arsenic and sulfur are released from arsenopyrite in an approximate 1:1 molar ratio, suggesting that oxidative dissolution by oxygen under circumneutral pH is congruent. Slower rates of iron release from the reactor indicate that some of the iron is lost from the effluent by oxidation to Fe(III) which subsequently hydrolyzes and precipitates. Using the electrochemical cell model for understanding sulfide oxidation, our results suggest that the rate-determining step in arsenopyrite oxidation is the reduction of water at the anodic site rather than the transfer of electrons from the cathodic site to oxygen as has been suggested for other sulfide minerals such as pyrite.  相似文献   

11.
Sandstone dissolution is a common water–rock reaction in the Earth’s crust, but a thorough understanding of this phenomenon is constrained by poorly determined kinetic data. To this end, kinetic data were determined for the dissolution of arkosic sandstone powders in deionised water (pH was about 7.0–7.3 and electrical conductivity was between 0.95 and 1.00 μS/cm). Release rates of dissolved elements were determined over the range 50–350 °C at 20, 15, and 10 MPa using a column flow-through pressure vessel reactor. The conductivity of the outlet solution, measured at room temperature, is dependent on the charge of major cations such as Na+, K+, Ca2+ and Mg2+ at these conditions. The conductivity of the outlet solution was used to determine the steady state of the dissolution of sandstone powders. The pH values of the outlet solutions at the steady state, measured ex situ at room temperature, were about 7.7, 8.3, 8.4, 8.4 and 7.6 at 75, 100, 150, 200 and 250 °C, respectively, at 10 MPa. Silicon, Na, K, Ca, Al and Mg are the major ions found in the solution at low temperatures, but Si is the only major ion retained at higher temperatures (>150 °C). Compared with static experiments, the flowing dissolution experiments occurred at conditions far from equilibrium. The relationship between temperature and dissolution rates of arkosic sandstone powders was described as log R = 0.005469t − 10.50 where R is the dissolution rates of sandstone powders in kg/(m2 s), t is temperature in °C which ranged from 100 to 350 °C at 20 and 15 MPa, and the dissolution rates of sandstone powders were measured only for the major dissolved elements without oxygen in the outlet solutions.  相似文献   

12.
This work focuses on sulfide mineral oxidation rates under oxic conditions in freshly processed pyrite-rich tailings from the ore concentrator in Boliden, northern Sweden. Freshly processed tailings are chemically treated in the plant to kill bacteria and to obtain increased metal yields, resulting in a high pH level of 10–12 in the process water. Different oxidation experiments (abiotic oxidation in untreated tailings, acid abiotic oxidation and acid microbial oxidation), containing the Boliden tailings, were performed at room temperature with dissolved oxygen (0.21 atm O2) for 3 months. The different pyrite oxidation rates given from the study were 2.4×10−10 mol m−2 s−1 for the microbial, 5.9×10−11 mol m−2 s−1 for the acidic abiotic and 3.6×10−11 mol m−2 s−1 for the untreated experiments. Because of the potential precipitation of gypsum in the batch solutions, these oxidation rates are considered minimum values. The release rates for copper and zinc from chalcopyrite and sphalerite in the acid experiments were also investigated. These rates were normalized to the metal concentration in the tailings, and then compared to the release rate for iron from pyrite. These normalized results indicated that metal release decreased in the order Cu>Zn>Fe, demonstrating that pyrite is more resistant to oxidation than sphalerite and chalcopyrite. Pyrite was also more resistant to acidic dissolution than to microbial dissolution, while a significant fraction of sphalerite and chalcopyrite dissolved in the acid abiotic solutions.  相似文献   

13.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

14.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

15.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

16.
Solubility experiments were performed on nanocrystalline scorodite and amorphous ferric arsenate. Nanocrystalline scorodite occurs as stubby prismatic crystals measuring about 50 nm and having a specific surface area of 39.88 ± 0.07 m2/g whereas ferric arsenate is amorphous and occurs as aggregated clusters measuring about 50–100 nm with a specific surface area of 17.95 ± 0.19 m2/g. Similar to its crystalline counterpart, nanocrystalline scorodite has a solubility of about 0.25 mg/L at around pH 3–4 but has increased solubilities at low and high pH (i.e. <2 and >6). Nanocrystalline scorodite dissolves incongruently at about pH > 2.5 whereas ferric arsenate dissolution is incongruent at all the pH ranges tested (pH 2–5). It appears that the solubility of scorodite is not influenced by particle size. The dissolution rate of nanocrystalline scorodite is 2.64 × 10−10 mol m−2 s−1 at pH 1 and 3.25 × 10−11 mol m−2 s−1 at pH 2. These rates are 3–4 orders of magnitude slower than the oxidative dissolution of pyrite and 5 orders of magnitude slower than that of arsenopyrite. Ferric arsenate dissolution rates range from 6.14 × 10−9 mol m−2 s−1 at pH 2 to 1.66 × 10−9 mol m−2 s−1 at pH 5. Among the common As minerals, scorodite has the lowest solubility and dissolution rate. Whereas ferric arsenate is not a suitable compound for As control in mine effluents, nanocrystalline scorodite that can be easily precipitated at ambient pressure and temperature conditions would be satisfactory in meeting the regulatory guidelines at pH 3–4.  相似文献   

17.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

18.
The mechanism of pyrite oxidation in carbonate-containing alkaline solutions at 80 °C was investigated with the help of rate experiments, thermodynamic modeling and diffuse reflectance infrared spectroscopy (DRIFTS). Pyrite oxidation rate increased with pH and was enhanced by addition of bicarbonate/carbonate ions. The carbonate effect was found to be limited to moderately alkaline conditions (pH 8-11). Metastable Eh-pH diagrams, at 25 °C, indicate that soluble iron-carbonate complexes (FeHCO3, FeCO30, Fe(CO3)(OH) and FeCO32−) may coexist with pyrite in the pH range of 6-12.5. Above pH 11 and 13, the Fe(II) and Fe(III) hydroxocomplexes, respectively, become stable, even in the presence of carbonate/bicarbonate ions. Surface-bound carbonate complexes on iron were also identified with DRIFTS as products of pyrite oxidation in addition to iron oxyhydroxides and soluble sulfate species. The conditions under which thermodynamic and DRIFTS analyses indicate the presence of carbonate compounds also correspond to those in which the fastest rate of pyrite oxidation in carbonate solutions was observed. Following the Singer-Stumm model for pyrite oxidation in acidic solutions, it is assumed that Fe(III) is the preferred pyrite oxidant under alkaline conditions. We propose that carbonate ions facilitate the electron transfer from soluble iron(II)-carbonate to O2, increase the iron solubility, and provide buffered, favorable alkaline conditions at the reaction front, which in turn favors the overall kinetics of pyrite oxidation. Therefore, the electron transfer from sulfur atoms to O2 is facilitated by the formation of the cycle of Fe(II)-pyrite/Fe(III)-carbonate redox couple at the pyrite surface.  相似文献   

19.
Pyrite samples synthesized with As, Co, or Ni impurities and without added impurities were oxidized in batch and mixed flow-through reactors in the presence of 1 mM ferric iron, at pH 2. Six samples from each dopant population were used to provide a statistically robust comparison; two natural samples from Leadville, CO (major impurities Pb, As, Bi, Ag, Zn) and Elba, Italy (Co, As) were also included. In each experiment, three reaction progress variables were monitored: ferric iron, ferrous iron, and sulfate. The pyrite samples with impurities have average oxidation rates that are faster than the undoped samples, with As- and Co-doped pyrite having the highest rates. As, Co, and Ni were released to solution in accordance with their concentrations in the solid samples. As concentrations in the batch reactor experiments tended to remain constant, in contrast to Co and Ni, which increased over time. Initial rates, calculated from the batch reactor experiments, were faster than the steady-state rates calculated from the mixed flow-through reactor experiments. Apparent rates calculated using sulfate were faster than apparent rates calculated using ferric and ferrous iron, reflecting oxidation of ferrous iron in solution by dissolved oxygen. The results imply that impurities in pyrite do contribute to its reactivity, in agreement with studies using electrochemical methods. Oxidation rate differences among pyrite samples with different impurities are probably too small to warrant explicit consideration in environmental modeling applications, but are important to understanding pyrite oxidation mechanisms and semiconducting properties.  相似文献   

20.
Biotite dissolution experiments were carried out to better understand the dissolution kinetics and Fe behavior under low O2 conditions, and to give an insight into the Precambrian weathering. Mineral dissolution with a continuous flow-through reactor was employed at 25 °C for up to 65 days varying partial pressure of atmospheric oxygen (PO2), pH (6.86 and 3.01) and Fe content in mineral (1.06 and 0.11 mol of Fe per O10(OH,F)2 for biotite and phlogopite, respectively) independently for the examination of their effects on biotite dissolution. Low PO2 conditions were achieved in a newly developed glove box (PO2 ? 6 × 10−4 atm; referred to as anoxic conditions), which was compared to the present, ambient air conditions (0.2 atm of PO2; oxic conditions). The biotite dissolution rate was slightly faster under anoxic conditions at pH 6.86 while it was not affected by PO2 at pH 3.01. There was no direct effect of Fe content on dissolution rate at pH 6.86 while there was a small difference in dissolution rate between biotite and phlogopite at pH 3.01. The 1.5 order-of-magnitude faster release rate of Fe under anoxic conditions for biotite dissolution at pH 6.86 resulted from the difference in ratio of Fe3+ precipitates remaining in the reactor to Fe dissolved (about 60% and 100% under anoxic and oxic conditions, respectively), which is caused mainly by the difference in PO2. The results infer that the Fe2+ and Fe3+ contents in the Paleoproterozoic paleosols, fossil weathering profiles, are reflected by atmospheric oxygen levels at the time of weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号