首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine . The measured ratio of the diffusion coefficients for Li and K in water (DLi/DK = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D7Li/D6Li=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D25Mg/D24Mg=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D37Cl/D35Cl=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.  相似文献   

2.
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter F. M., Davis A. M., Ebel D. S., and Hashimoto A. (2002) Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta66, 521-540; Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M., and Wadhwa M. (2007a) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta71, 5544-5564.). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, αSi, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that αSi = 0.98985 ± 0.00044 (2σ) for 29Si/28Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 °C. This value is different from what has been reported for evaporation of liquid Mg2SiO4 (Davis A. M., Hashimoto A., Clayton R. N., and Mayeda T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature347, 655-658.) and of a melt with CI chondritic proportions of the major elements (Wang J., Davis A. M., Clayton R. N., Mayeda T. K., and Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2-REE melt system. Geochim. Cosmochim. Acta65, 479-494.). There appears to be some compositional control on αSi, whereas no compositional effects have been reported for αMg. We use the values of αSi and αMg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.  相似文献   

3.
Despite their great importance in low-temperature geochemistry, diffusion coefficients of noble gas isotopes in liquid water (D) have been measured only for the major isotopes of helium, neon, krypton and xenon. Data on the diffusion coefficients of minor noble gas isotopes are essentially non-existent and so typically have been estimated by a kinetic-theory model in which D varies as the inverse square root of the isotopic mass (m): D ∝ m−0.5. To examine the validity of the kinetic-theory model, we performed molecular dynamics (MD) simulations of the diffusion of noble gases in ambient liquid water. Our simulation results agree with available experimental data on the solvation structure and diffusion coefficients of the major noble gas isotopes and reveal for the first time that the isotopic mass-dependence of all noble gas self-diffusion coefficients has the power-law form D ∝ mβ with 0 < β < 0.2. Thus our results call into serious question the widespread assumption that the ‘square-root’ model can be applied to estimate the kinetic fractionation of noble gas isotopes caused by diffusion in ambient liquid water. To illustrate the importance of this finding, we used the diffusion coefficients determined in our MD simulations to reconsider the geochemical modeling of 20Ne/22Ne and 36Ar/40Ar isotopic ratios in three representative hydrologic studies. Our new modeling results indicate that kinetic isotopic fractionation by diffusion may play a significant role in noble gas transport processes in groundwater.  相似文献   

4.
Two types of laboratory experiments were used to quantify magnesium isotopic fractionations associated with chemical and thermal (Soret) diffusion in silicate liquids. Chemical diffusion couples juxtaposing a molten natural basalt (SUNY MORB) and a molten natural rhyolite (Lake County Obsidian) were run in a piston cylinder apparatus and used to determine the isotopic fractionation of magnesium as it diffused from molten basalt to molten rhyolite. The thermal diffusion experiments were also run in a piston cylinder apparatus but with a sample made entirely of molten SUNY MORB displaced from the hotspot of the assembly furnace so that the sample would have a temperature difference of about 100-200 °C from one end to the other. The chemical diffusion experiments showed fractionations of 26Mg/24Mg by as much as 7‰, which resulted in an estimate for the mass dependence of the self-diffusion coefficients of the magnesium isotopes corresponding to D26Mg/D24Mg=(24/26)β with β = 0.05. The thermal diffusion experiments showed that a temperature difference of about 100 °C resulted in the MgO, CaO, and FeO components of the basalt becoming slightly enriched by about 1 wt% in the colder end while SiO2 was enriched by several wt% in the hotter end. The temperature gradient also fractionated the magnesium isotopes. A temperature difference of about 150 °C produced an 8‰ enrichment of 26Mg/24Mg at the colder end relative to the hotter end. The magnesium isotopic fractionation as a function of temperature in molten basalt corresponds to 3.6 × 10−2‰/°C/amu.  相似文献   

5.
Samples produced in piston cylinder experiments were used to document the thermal isotopic fractionation of all the major elements of basalt except for aluminum and the fractionation of iron isotopes by chemical diffusion between a natural basalt and rhyolite. The thermal isotopic fractionations are summarized in terms of a parameter Ωi defined as the fractionation in per mil per 100 °C per atomic mass units difference between the isotopes. For molten basalt we report ΩCa = 1.6, ΩFe = 1.1, ΩSi = 0.6, ΩO = 1.5. In an earlier paper we reported ΩMg = 3.6. These fractionations represent a steady state balance between thermal diffusion and chemical diffusion with the mass dependence of the thermal diffusion coefficient being significantly larger than the mass dependence of the chemical diffusion coefficients for isotopes of the same element. The iron isotopic measurements of the basalt-rhyolite diffusion couple showed significant fractionation that are parameterized in terms of a parameter βFe = 0.03 when the ratio of the diffusion coefficients D54 and D56 of 54Fe and 56Fe is expressed in terms of the atomic mass as D54/D56 = (56/54)βFe. This value of βFe is smaller than what we had measured earlier for lithium, magnesium and calcium (i.e., βLi = 0.215, βCa = 0.05, βMg = 0.05) but still significant when one takes into account the high precision with which iron isotopic compositions can be measured (i.e., ±0.03‰) and that iron isotope fractionations at magmatic temperatures from other causes are extremely small. In a closing section we discuss technological and geological applications of isotopic fractionations driven by either or both chemical and thermal gradients.  相似文献   

6.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

7.
Bubbles grow in decompressing magmas by simple expansion and by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate elements and isotopes (or isotopologues) of dissolved components. This raises the possibility that the character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the absence of equilibrium vapor/melt isotopic fractionation. Recent experiments have confirmed the existence of an isotope mass effect on diffusion of the volatile element Cl in silicate melt [Fortin et al. (Isotopic fractionation of chlorine during chemical diffusion in a dacitic melt and its implications for isotope behavior during bubble growth (abstract), 2016 Fall AGU Meeting, 2016)], so there is a clear need to understand the efficacy of diffusive fractionation during bubble growth. In this study, numerical models of diffusion and mass redistribution during bubble growth were implemented for both “passive” volatiles—those whose concentrations are generally well below saturation levels—and “active” volatiles such as CO2 and H2O, whose elevated concentrations and limited solubilities are the cause of bubble nucleation and growth. Both diffusive and convective bubble-growth scenarios were explored. The magnitude of the isotope mass effect on passive volatiles partitioned into bubbles growing at a constant rate R in a static system depends upon R/D L, K d and D H/D L (K d = bubble/melt partition coefficient; D H/D L = diffusivity ratio of the heavy and light isotopes). During convective bubble growth, the presence of a discrete (physical) melt boundary layer against the growing bubble (of width x BL) simplifies outcomes because it leads to the quick onset of steady-state fractionation during growth, the magnitude of which depends mainly upon R?x BL/D L and D H/D L (bubble/melt fractionation is maximized at R?x BL/D L ≈0.1). Constant R is unrealistic for most real systems, so other scenarios were explored by including the solubility and EOS of an “active” volatile (e.g., CO2) in the numerical simulations. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble. For volatile species whose isotope mass effects on diffusion have been measured (Cl, Li), predicted isotope fractionation in the exsolved vapor can be as large as ?4‰ for Cl and ?25‰ for Li.  相似文献   

8.
Zoning patterns of light lithophile elements (the LLE: Li, Be, and B) in pyroxenes of some Martian basaltic meteorites have been used to suggest that the parent basalts were saturated in water and exsolved an aqueous fluid phase. Here, we examine LLE zoning in the augites of a quickly cooled Martian basalt that was not water-saturated—the Northwest Africa (NWA) 817 nakhlite. Analyses for LLE were by secondary ion mass spectrometry (SIMS), supported by EMP analyses of major and minor elements. In NWA 817, zoning of Be and B is consistent with igneous fractionations while Li abundances are effectively constant across wide ranges in abundance of other incompatible elements (Be, B, Ti, and Fe*). The lack of strong zoning in Li can be ascribed to intracrystalline diffusion, despite the rapid cooling of NWA 817. Most other nakhlites, notably Nakhla and Lafayette, cooled more slowly than did NWA 817 [Treiman, A.H., 2005. The nakhlite Martian meteorites: augite-rich igneous rock from Mars. Chem. Erde65, 203-270]. In them Li abundances are constant across augite, as are abundances of other elements. In Nakhla pyroxenes, all the LLE have effectively constant abundances across significant ranges in Fe* and Ti abundance. Lafayette is more equilibrated still, and shows constant abundances of LLE and nearly constant Fe*. A pyroxene in the NWA480 shergottite has constant Li abundances, and was interpreted to represent mineral fractionation coupled with exsolution of aqueous fluid. A simple quantitative model of this process requires that the partitioning of Li between basalt and aqueous fluid, LiDaq/bas, be 15 times larger than its experimentally determined value. Thus, its seems unlikely that the Li zoning pattern in NWA480 augite represents exsolution of aqueous fluid. Late igneous or sub-solidus diffusion seems more likely as is suggested by Li isotopic studies [Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2005. An ion-microprobe study of lithium isotopes behavior in nakhlites. Meteorit. Planet. Sci.40, Abstract #5118; Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta70, in press]. Pyroxenes of the Shergotty and Zagami meteorites have nearly constant abundances of B, and Li that decreases core-to-rim. Applying the quantitative model to the constant B in these pyroxenes requires that BDaq/bas be 25 times larger than experimentally constrained values. Li abundances in pigeonite can be fit by the model of crystal fractionation and fluid loss, but only if LiDaq/bas is 30 times the experimentally constrained value. The Li abundance pattern in augite cannot be modeled by simple fractionation, suggesting some strong crystal-composition effects. Thus, Li and B distributions in Shergotty and Zagami pyroxenes cannot be explained by igneous fractionation and exsolution of aqueous vapor. Intracrystalline diffusion, complete for B and incomplete for Li, seems more consistent with the observed zoning patterns.  相似文献   

9.
Experimental diffusion couples were used to study chemical diffusion between molten rhyolite and basalt with special emphasis on the associated fractionation of calcium and lithium isotopes. Diffusion couples were made by juxtaposing firmly packed powders of a natural basalt (SUNY MORB) and a natural rhyolite (Lake County Obsidian) and then annealing them in a piston cylinder apparatus for times ranging from 0.1 to 15.7 h, temperatures of 1350-1450°C, and pressures of 1.2-1.3 GPa. Profiles of the major elements and many trace elements were measured on the recovered quenched glasses. The diffusivities of all elements except lithium were found to be remarkably similar, while the diffusivity of lithium was two to three orders of magnitude larger than that of any of the other elements measured. Chemical diffusion of calcium from molten basalt into rhyolite was driven by a concentration ratio of ∼18 and produced a fractionation of 44Ca from 40Ca of about 6 ‰. Because of the relatively low concentration of lithium in the natural starting materials a small amount of spodumene (LiAlSi2O6) was added to the basalt in order to increase the concentration difference between basalt and rhyolite, which was expected to increase the magnitude of diffusive isotopic fractionation of lithium. The concentration ratio between Li-doped basalt and natural rhyolite was ∼15 and the resulting diffusion of lithium into the rhyolite fractionated 7Li from 6Li by about 40‰. We anticipate that several other major rock-forming elements such as magnesium, iron and potassium will also exhibit similarly larger isotopic fractionation whenever they diffuse between natural melts with sufficiently large differences in the abundance of these elements.  相似文献   

10.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

11.
The fractionation of lithium isotopes among quartz, muscovite, and a chloride-bearing aqueous fluid has been investigated experimentally at 400°-500°C and 50-100 MPa. Experiments were performed for 15-60 days in cold seal vessels with natural mineral specimens. Lithium was introduced primarily through the fluid, which also contained KCl and HCl. In most runs, the fluid was prepared with the L-SVEC standard (δ7Li = 0) and was 1 M in total chloride with K/Li/H = 100/10/1. In two experiments, a 6Li spike was employed. The experiments demonstrate that quartz and muscovite are susceptible to pronounced, rapid shifts in Li isotopic composition by diffusion through interaction with a Li-bearing fluid, particularly at 500°C. At 500°C, fractionation factors were determined to be Δquartz-aqueous ≅ +8 to + 12‰ and Δmuscovite-aqueous ≅ +18 to + 20‰. An intermineral fractionation factor is given by Δmuscovite-quartz ≈ +9‰. At 400°C, the results suggest Δquartz-aqueous ≈ +4 to + 6‰. The study provides evidence of systematic fractionation in lithium isotopes at the temperatures of some magmatic processes, such as those associated with porphyry-type ore systems and pegmatites.  相似文献   

12.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

13.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   

14.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

15.
Potential-based molecular dynamics simulations of aqueous uranyl carbonate species (MxUO2(CO3)y2+2x−2y with M = Mg, Ca, or Sr) were carried out to gain molecular-level insight into the hydration properties of these species. The simulation results were used to estimate the self-diffusion coefficients of these uranyl carbonate species, which often dominate uranyl speciation in groundwater systems. The diffusion coefficients obtained for the monoatomic alkaline-earth cations and polyatomic ions (uranyl, carbonate, and uranyl tri-carbonate) were compared with those calculated from the Stokes-Einstein (SE) equation and its variant formulation by Impey et al. (1983). Our results show that the equation of Impey et al. (1983), originally formulated for monovalent monoatomic ions, can be extended to divalent monoatomic ions, with some success in reproducing the absolute values and the overall trend determined from the molecular dynamics simulations, but not to polyatomic ions, for which the hydration shell is not spherically symmetrical. Despite the quantitative failure of both SE formulations, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed that a general linear dependence is observed for these complexes as expected from the SE equation. The nature of the alkaline-earth cation in the uranyl carbonate complexes was not found to have a significant effect on the ion’s diffusion coefficient, which suggests that the use of a single diffusion coefficient for different alkaline-earth uranyl carbonate complexes in microscopic diffusion models is appropriate.The potential model reproduced well published quantum mechanical and experimental data of and of the individual constituent ions, and therefore is expected to offer reliable predictions of the structure of magnesium and strontium uranyl carbonate aqueous species, for which there is no structural data available to date. In addition, the interatomic distances reported for could help with the refinement of the interpretation of EXAFS data of these species, which is made difficult by the similar uranium-distant carbonate oxygen and uranium-calcium distances.An analysis of the dynamics of water exchange around the alkaline-earth cations revealed that the presence of the uranyl tri-carbonate molecule has a strong influence on the geometry of the cation’s first hydration shell, which, in turn, can considerably affect the water exchange kinetics depending on whether the imposed geometry matches that around the isolated alkaline-earth cation. This result shows that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which may lead to different reactivities. Finally, significant changes in water residence time were also predicted when replacing carbonate for water ligands in the uranyl coordination shell.  相似文献   

16.
Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect δ97/95Modissolved-δ97/95Moadsorbed=1.8 have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as . Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces.  相似文献   

17.
Transition metal stable isotope signatures can be useful for tracing both natural and anthropogenic signals in the environment, but only if the mechanisms responsible for fractionation are understood. To investigate isotope fractionations due to electrochemistry (or redox processes), we examine the stable isotope behavior of iron and zinc during the reduction reaction  + 2e = Mmetal as a function of electrochemical driving force, temperature, and time. In all cases light isotopes are preferentially electroplated, following a mass-dependent law. Generally, the extent of fractionation is larger for higher temperatures and lower driving forces, and is roughly insensitive to amount of charge delivered. The maximum fractionations are δ56/54Fe = −4.0‰ and δ66/64Zn = −5.5‰, larger than observed fractionations in the natural environment and larger than those predicted due to changes in speciation. All the observed fractionation trends are interpreted in terms of three distinct processes that occur during an electrochemical reaction: mass transport to the electrode, chemical speciation changes adjacent to the electrode, and electron transfer at the electrode. We show that a large isotope effect adjacent the electrode surface arises from the charge-transfer kinetics, but this effect is attenuated in cases where diffusion of ions to the electrode surface becomes the rate-limiting step. Thus while a general increase in fractionation is observed with increasing temperature, this appears to be a result of thermally enhanced mass transport to the reacting interface rather than an isotope effect associated with the charge-transfer kinetics. This study demonstrates that laboratory experiments can successfully distinguish isotopic signatures arising from mass transport, chemical speciation, and electron transfer. Understanding how these processes fractionate metal isotopes under laboratory conditions is the first step towards discovering what role these processes play in fractionating metal isotopes in natural systems.  相似文献   

18.
The distribution of Mo between seawater and marine ferromanganese oxides has great impacts on concentration and isotopic composition of Mo in modern oxic seawater. To reveal the adsorption chemistry of Mo to ferromanganese oxides, we performed (i) detailed structural analyses of Mo surface complexes on δ-MnO2, ferrihydrite, and hydrogenetic ferromanganese oxides by L3- and K-edge XAFS, and (ii) adsorption experiments of Mo to δ-MnO2 and ferrihydrite over a wide range of pHs, ionic strengths, and Mo concentrations. XAFS analyses revealed that Mo forms distorted octahedral (Oh) inner-sphere complexes on δ-MnO2 whereas it forms a tetrahedral (Td) outer-sphere complex on ferrihydrite. In the hydrogenetic ferromanganese oxides, the dominant host phase of Mo was revealed to be δ-MnO2. These structural information are consistent with the macroscopic behaviors of Mo in adsorption experiments, and Mo concentration in modern oxic seawater can be explained by the equilibrium adsorption reaction on δ-MnO2. In addition, the large isotopic fractionation of Mo between seawater and ferromanganese oxides detected in previous studies can be explained by the structural difference between and adsorbed species on the δ-MnO2 phase in ferromanganese oxides. In contrast, smaller fractionation of Mo isotopes on ferrihydrite is due to little change in the Mo local structures during its adsorption to ferrihydrite.The structures of Mo species adsorbed on crystalline Fe (oxyhydr)oxides, goethite, and hematite were also investigated at pH 8 and I = 0.70 M (NaNO3). Our XAFS analyses revealed that Mo forms inner-sphere complexes on both minerals: Td edge-sharing (46%) and Oh double corner-sharing (54%) for goethite, and Td double corner-sharing (14%) and Oh edge-sharing (86%) for hematite. These structural information, combined with those for amorphous ferrihydrite and δ-MnO2, show the excellent correlation with the magnitude of adsorptive isotopic fractionation of Mo reported in previous studies: the proportion of Oh species or their magnitude of distortion in Mo surface complexes become larger in the order of ferrihydrite < goethite < hematite < δ-MnO2, a trend identical to the magnitude of isotopic fractionation.Based on the comparison with previous reports for Mo surface species on various oxides, the chemical factors that affect Mo surface complex structures were also discussed. The hydrolysis constant of cation in oxides, log KOH (or the acidity of the oxide surfaces, PZC) is well correlated with the mode of attachment (inner- or outer-sphere) of Mo surface complexes. Furthermore, the symmetric change in Mo species from Td to Oh is suggested to be driven by the formation of inner-sphere complexes on specific sites of the oxide surfaces.  相似文献   

19.
The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si can readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch experiment series designed as function of time (0-504 h) and initial concentration (ic) of Si in solution (0.21-1.80 mM), at 20 °C, constant pH (5.5) and ionic strength (1 mM). At various contact times, the δ29Si vs. NBS28 compositions were determined in selected solutions (ic = 0.64 and 1.06 mM Si) by MC-ICP-MS in dry plasma mode with external Mg doping with an average precision of ±0.08‰ (±2σSEM). Per oxide mass, ferrihydrite (74-86% of initial Si loading) adsorbed more Si than goethite (37-69%) after 504 h of contact over the range of initial Si concentration 0.42-1.80 mM. Measured against its initial composition (δ29Si = +0.01 ± 0.04‰ (±2σSD)), the remaining solution was systematically enriched in 29Si, reaching maximum δ29Si values of +0.70 ± 0.07‰ for ferrihydrite and +0.50 ± 0.08‰ for goethite for ic 1.06 mM. The progressive 29Si enrichment of the solution fitted better a Rayleigh distillation path than a steady state model. The fractionation factor 29ε (±1σSD) was estimated at −0.54 ± 0.03‰ for ferrihydrite and −0.81 ± 0.12‰ for goethite. Our data imply that the sorption of onto synthetic iron oxides produced a distinct Si-isotopic fractionation for the two types of oxide but in the same order than that generated by Si uptake by plants and diatoms. They further suggest that the concentration of light Si isotopes in the clay fraction of soils is partly due to sorption onto secondary clay-sized iron oxides.  相似文献   

20.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号