首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transient diffusion of cationic and anionic tracers through clay-rocks is usually modeled with parameters like porosity, tortuosity (and/or constrictivity), sorption coefficients, and anionic exclusion. Recently, a new pore scale model has been developed by Revil and Linde [Revil A. and Linde N. (2006) Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci.302, 682-694]. This model is based on a volume-averaging approach of the Nernst-Planck equation. The influence of the electrical diffuse layer is accounted for by a generalized Donnan equilibrium model through the whole connected pore space that is valid for a multicomponent electrolyte. This new model can be used to determine the composition of the pore water of the Callovo-Oxfordian clay-rock, the osmotic efficiency of bentonite as a function of salinity, the osmotic pressure, and the streaming potential coupling coefficient of clay-rocks. This pore scale model is used here to model the transient diffusion of ionic tracers (22Na+, 36Cl, and ) through the Callovo-Oxfordian clay-rock. Speciation of shows that ∼1/3 of the SO4 is tied-up in different complexes. Some of these complexes are neutral and are therefore only influence by the tortuosity of the pore space. Using experimental data from the literature, we show that all the parameters required to model the flux of ionic tracers (especially the mean electrical potential of the pore space and the formation factor) are in agreement with independent evaluations of these parameters using the osmotic pressure determined from in situ pressure measurements and HTO diffusion experiments.  相似文献   

2.
The Stern theory as applicable to interacting parallel clay platelet systems was used to study the compressibility behaviour of bentonites. For a constant surface electrical potential, the distribution of the total electrical charge among the Stern-layer and the Gouy-layer was found to have significant influence on the electrical potential at the midplane between clay platelets. Consideration of the Stern-layer was found to reduce the repulsive pressure or the swelling pressure between clay platelets at large platelet spacing, whereas the repulsive pressure increased significantly when the interacting Gouy-layers were pushed aside. A far greater repulsive pressure was noted for Ca-bentonite than that occurred for Na-bentonite at a platelet distance close to 1.0 nm. Similarly, strong interaction between clay platelets was noted due to suppressed Gouy-layers when the bulk fluid concentration was increased. The repulsive pressure generated due to the overlapping of the Stern-layers was found to be sensitive to changes in the specific adsorption potential, the dielectric constant of the pore fluid in the Stern-layer, and the surface electrical potential. Comparisons of the calculated pressure–void ratio relationships from the Stern theory and the Gouy-Chapman diffuse double layer theory with the experimental consolidation test results of Na- and divalent-rich bentonites showed that, in general, the Stern theory improved the predictions of pressure–void ratio relationships, particularly for pressures greater than 100 kPa; however, strong agreements were lacking in all the cases studied.  相似文献   

3.
Capacitive deionization has been developed as a promising desalination alternative for removing ions from aqueous solutions. In this study, the evaluation of capacitive performance was carried out by galvanostatic charge/discharge and cyclic voltammetry experiments. The good capacitive and electrosorption behaviors suggest carbon aerogel not only treated as an electrical double layer capacitor, but also as a potential electrode in capacitive deionization processes. Also, the capacitive deionization characteristics indicate that electrosorption/regeneration can be controlled by polarization and depolarization of each electrode. It implies that sodium and chloride ions are electrostatically held to form electrical double layer on the surface of charged electrodes. The electrosorption performance at different applied voltages and solution concentrations was investigated. It is found that the removal of sodium chloride increases with increasing applied voltage and solution concentration, resulting from stronger electrostatic interactions, higher concentration gradient, and less double layer overlapping effect. Based on Langmuir isotherm, the equilibrium electrosorption capacity at 1.2 V is determined as 270.59 μmol/g. Under this condition, due to the presence of micropores associated with the double layer overlapping, the effective surface area for electrosorption of ions at 1.2 V is estimated in the range of 12.18–14.25 % of the Brunauer–Emmett–Teller surface area. The results provide a fundamental understanding of electrosorption of ions and help promoting capacitive deionization technology for water purification and desalination.  相似文献   

4.
A microstructure model of dual-porosity type is proposed to describe contaminant transport in fully-saturated swelling clays. The swelling medium is characterized by three separate-length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the nanoscale, the medium is composed of charged clay particles saturated by a binary monovalent aqueous electrolyte solution. At the intermediate (micro) scale, the two-phase homogenized system is represented by swollen clay clusters (or aggregates) with the nanoscale electrohydrodynamics, local charge distribution, and disjoining pressure effects incorporated in the averaged constitutive laws of the electro-chemo-mechanical coefficients and the swelling pressure, which appear in Onsager’s reciprocity relations and in a modified form of Terzaghi’s effective principle, respectively. The microscopic coupling between aggregates and a bulk solution lying in the micropores is ruled by a slip boundary condition on the tangential velocity of the fluid, which captures the effects of the thin electrical double layers surrounding each clay cluster. At the macroscale, the system of clay clusters is homogenized with the bulk fluid. The resultant macroscopic picture is governed by a dual-porosity model wherein macroscopic flow and ion transport take place in the bulk solution and the clay clusters act as sources/sinks of mass of water and solutes to the bulk fluid. The homogenization procedure yields a three-scale model of the swelling medium by providing new nano and micro closure problems, which are solved numerically to construct constitutive laws for the effective electro-chemo-hydro-mechanical coefficients. Considering local instantaneous equilibrium between the clay aggregates and micropores, a quasisteady version of the dual-porosity model is proposed. When combined with the three-scale portrait of the swelling medium, the quasisteady model allows us to build-up numerically the constitutive law of the equilibrium adsorption isotherm, which governs the instantaneous immobilization of the solutes in the clay clusters. Moreover, the constitutive behavior of the retardation coefficient is also constructed by exploring its representation in terms of the local profile of the electrical double layer potential of the electrolyte solution, which satisfies the Poisson–Boltzmann problem at the nanoscale.  相似文献   

5.
双电层结构对研究黏土力学特性、冻土水分迁移等具有重要意义。为了探究不同影响因素对黏土颗粒扩散双电层电势分布的影响,借鉴Gouy-Chapman-Stern双电层理论,基于Nernst-Planck方程和Poisson-Boltzmann方程,利用数值软件COMSOL定量分析了温度、浓度、颗粒尺寸、颗粒形状以及溶液相对介电常数对扩散双电层电势分布的影响规律。研究表明:温度对电势分布的影响不明显,但随着温度以及Stern层厚度增加,黏土颗粒表面电势和Stern电势均增加;而随着溶液浓度以及相对介电常数减小,表面电势值增加;在矿物成分、表面电荷密度以及颗粒形状确定的情况下,尺寸对于扩散双电层电势分布的影响不显著;但颗粒的不规则形状对电势分布的影响较为明显,当颗粒形状存在夹角时,夹角处的表面电势远大于其他位置,且夹角越小,夹角处表面电势值越大。  相似文献   

6.
长期注水开发油田的开发流体,长期对储集层进行浸泡、驱动,使储集层的众多微观孔隙与喉道的极其微小空间发生风化、剥蚀、溶解和沉积等微观动态地质作用。这些地质作用是由于开发流体打破了地下的动态平衡产生的,它对储集层的岩石骨架、孔隙和喉道等进行改造和破坏,进而控制剩余油的形成与分布,并使得微观剩余油存在多种分布模式。研究指出微观动态地质作用是储集层随开发而发生变化的重要原因,是控制剩余油形成和分布的基本因素。微观动态地质作用长期持续存在,并对储集层进行改造和破坏,使得储集层中的剩余油分布更复杂。  相似文献   

7.
For safety evaluation of hazardous waste repositories in clay-rocks, a thorough assessment of porewater chemistry and water–rock interactions is required. However, this objective is a challenging task due to the low hydraulic conductivity and water content of such rocks, which subsequently renders porewater sampling difficult (without inducing perturbations). For this reason, an indirect approach was developed to determine porewater composition of clay-rocks, by a geochemical model of water–rock interaction using some properties of the rock and the solution. The goal of this paper is to obtain the porewater composition of the Toarcian/Domerian argillaceous formation at Tournemire (South of France), for which a reliable model is still lacking. The following work presents a comprehensive characterization of the geochemical system of the Tournemire clay-rock, including mineralogy, petrology, mobile anions, cation exchange properties, accessible porosity and CO2 partial pressure. Perturbation corrections from fracture water sampling were also computed. These water were found in sealed fractures (Beaucaire et al., 2008) and their radiocarbon apparent age is estimated at 20 ka. Their age together with their equilibrium situation allow considering these fracture waters as representative of the formation porewater. The model developed to calculate the Tournemire porewater composition is essentially based on cation exchange by a multi-site approach, but equilibrium with some mineral phases (calcite, quartz and pyrite) is also considered. Different exchange sites of different affinities towards cations are used, which proportions are given by the mineralogy. Exchange on illite is performed with a three-sites model, while one site is considered for smectite phases. Multi-site model results are compared with corrected fracture water data and two other models: a model only based on mineral equilibrium and a model using cation exchange on one global site. The best results were obtained with the models that take into account cation exchange and particularly with the multi-site model. The interest in considering a model with exchange sites of different affinities is particularly obvious for a satisfactory representation of the K+ content in solution. A dependence of K+ content to the amount of high affinity sites was observed, leading to an improvement of its simulation when uncertainty on mineralogical data is considered. Once validated, the multi-site model was applied at different levels of the Tournemire argillaceous formation to obtain a profile of the porewater composition.  相似文献   

8.
The solution selected by some countries to isolate radioactive wastes from the biosphere for up to one million years in deep geological repositories includes a multi-barrier disposal design, with steel canister, bentonite and cement materials. The geochemical contrast between such materials and the host rock formation creates perturbations potentially altering the confinement properties of the formation. In this context, the French Institute for the Radiological protection and Nuclear Safety (IRSN) have developed an in situ experimental programme based on the study of cement/argillaceous formation interfaces in their Underground Research Laboratory at Tournemire (Aveyron, France). An in situ engineered analogue of a cement/clay-rock interface which has undergone 15 years of interaction has been characterised. Such important interaction time for an in situ engineered analogue provides a bridge between laboratory-derived data and the long time scale of safety assessment modelling. As the mineralogical and petrological investigations have already been published, this work presents for the first time a quantitative characterisation of the spatial distribution of the porosity in the cement and the clay-rock in terms of time scale and design. Interfaces have been characterised using an autoradiography technique in addition to petrophysical measurements. This technique enables visualisation and quantification of the spatial distribution of the porosity using 2D mapping of decimetric-scale specimens. Thus autoradiographs allow highlighting the relationship between the field heterogeneities and the pore space evolution in each material in contact. Moreover, the porosity measurements show a clogging of the porosity in the clay-rock while the porosity increases in the cement. The extension of the porosity evolution extends to a centimetre on both sides of the interface but is heterogeneously distributed in space as a function of the fissure network and interface geometries. The connected fissure network visualised using autoradiography in the clogged area could permit solute (e.g. radionuclide) transport and may also be interpreted as an evolution of the mechanical properties of the clay-rock formation upon alkaline perturbation. This set of data, with the spatial quantification of the porosity in both cement and clay materials will be useful to constrain reactive transport modelling and thus to predict long term evolution of an engineered barrier.  相似文献   

9.
Microscopic pore structure and water distribution are important and fundamental parameters for coalbed methane reservoir characterisation. These are closely related to the calculation/interpretation of other critical parameters, such as permeability and flow capacity. In this study, scanning electron microscopy, low-pressure nitrogen gas adsorption, nuclear magnetic resonance spectroscopy, and theoretical calculations were used to study the pore structure characteristics and water distribution of Zhaozhuang coal mine in the southeastern Qinshui Basin, PR China. The results show that the pore radius ranges from 2.066 to 594.045?nm, mainly classified as micropores and transitional pores. The micropores significantly contribute to the total pore volume. The adsorption pores (micropores and transitional pores) contribute the most to the total specific surface area. The T2 spectrum distributions of saturated water samples show two peaks. The first T2 spectrum peak is related to adsorption pores, whereas the second T2 spectrum peak is related to seepage pores. The seepage pores were not well developed as the adsorption pores. Most adsorption pores are saturated with irreducible water that could not be discharged by centrifugation, whereas the seepage pores are saturated with movable water that could be completely discharged by centrifugation. The T2 cutoff method was used to calculate the irreducible water saturation, and the irreducible water saturation of the sample was ≥90%. The irreducible water was mainly distributed in the micropores, and some of the irreducible water was distributed in the transitional pores. The irreducible water that remains in the pores can cause reservoir damage.  相似文献   

10.
某水利工程泥化夹层的形成及变化趋势的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
在我国大规模的水利水电工程建设中,遇到了各种各样的工程地质问题,其中软弱夹层问题,便是经常碰到的重大技术课题之一。由于软弱夹层的影响给工程造成许多危害:被迫停工,增加投资,改变设计方案,延长施工周期,降低设计标准使用。在国外不少工程由于没有进行深入的工程地质勘察和研究,潜伏的软弱夹层的危害,曾导致发生了数十起的垮坝事件。如美国圣佛兰西重力坝、奥斯丁重力坝、德克萨斯重力圬工坝、俄亥俄河26号坝、印度的提格拉坝等的失事,以及意大利瓦依昂坝水库的巨大滑坡。  相似文献   

11.
Stoichiometric solubility constants of calcite in initially supersaturated solutions of various magnesium to calcium concentration ratios but identical ionic strength were determined at 25°C and one atmosphere total pressure.The thermodynamic solubility constant of calcite is used with ion pairing equations to interpret the data reported in this study. Results indicate that even though magnesian calcites, rather than pure calcite, precipitate from seawater solutions containing magnesium ions, the incorporation of MgCO3 in the calcite crystal lattice does not extensively alter the equilibrium calcium carbonate activity product.The equilibrium activity of the ionic species in solution and the composition of magnesian calcite overgrowths precipitated from solutions of similar composition are used to calculate the solubility of magnesian calcites. The values for magnesian calcite solubilities obtained by this approach are lower than those obtained from the dissolution kinetics of biogenic carbonates.  相似文献   

12.
We present rock mechanical test results and analytical calculations which demonstrate that a negative surface charge, resulting from sulfate adsorption from the pore water, impacts the rock mechanical behavior of high-porosity chalk. Na2SO4 brine flooded into chalk cores at 130 °C results in significantly reduced bulk modulus and yield point compared with that of NaCl brine at the same conditions. The experimental results have been interpreted using a surface complexation model combined with the Gouy-Chapman theory to describe the double layer. The calculated sulfate adsorption agrees well with the measured data. A sulfate adsorption of about 0.3 μmol/m2 and 0.7–1 μmol/m2 was measured at 50 and 130 °C, respectively. Relative to a total sites of 5 sites/nm2 these values correspond to an occupation of 4 % and 8–13 % which sufficiently explains the negative charging of the calcite surfaces. The interaction between charged surfaces specifically in the weak overlaps of electrical double layer gives rise to the total disjoining pressure in granular contacts. The net repulsive forces act as normal forces in the grains vicinity, counteracting the cohesive forces and enhance pore collapse failure during isotropic loading, which we argue to account for the reduced yield and bulk modulus of chalk cores. The effect of disjoining pressure is also assessed at different sulfate concentrations in aqueous solution, temperatures, as well as ionic strength of solution; all together remarkably reproduce similar trends as observed in the mechanical properties.  相似文献   

13.
Fougerite is a new iron oxide, a mixed M(II)–M(III) hydroxide, a member of the green rust group. Its structure consists of a brucitic layer of Fe(III)–Fe(II)–Mg(II), where the excess of the positive charge due to Fe3+ is compensated in the interlayer by anions. The limits of composition are structurally and geochemically constrained, and the stabilities of the mineral and green rusts are obtained by a thermodynamic model of a regular solid solution, for different compensating anions and for any allowed composition of the brucitic layer.  相似文献   

14.
The aim of this paper is to evaluate the soil water characteristic curves (SWCC) of undisturbed expansive shale identified at different locations of Kingdom of Saudi Arabia. The SWCCs were evaluated for suction ranging from 0.5 to 400 MPa. Based on test results, all SWCCs reveal a bimodal curve indicating the presence of two distinct pore size distributions referred to as small and large micropores. Volume change measurements were performed to evaluate void ratio–suction relationships which confirmed the expansive nature of shale. Similarities between measured SWCCs and void ratio–suction relations developed for expansive shale originating from same geological formation suggests the impact of geological and environmental conditions on the unsaturated behavior of shale samples. Finally, a modified approach based on Mckeen’s classification methodology was proposed to assess the swelling potential using bimodal SWCCs. The modified approach was used to assess the relative contribution of different micropores on the swelling potential of shale.  相似文献   

15.
为了研究高煤级煤储层含水性对吸附能力的影响,对阳泉-寿阳区块8件代表性煤样开展了镜质体反射率、显微组分、孔隙度、压汞、核磁共振和甲烷等温吸附等实验,分析了煤储层孔径分布、核磁共振T2谱响应特征、核磁孔隙度以及煤岩吸附能力,同时对煤储层含水性和煤储层吸附能力的相互关系进行了分析。研究结果表明:高煤级煤储层孔隙以微孔发育为主,孔隙含水性以微小孔中的束缚水赋存状态为主,且其含水量随最大镜质体反射率(Ro,m)的增大而增加。在影响高煤级煤储层吸附能力的多种因素中,煤储层含水性对煤岩吸附能力起着决定性的作用,尤其体现在微小孔中的束缚水对吸附能力的影响,束缚水含量越高,煤岩吸附能力越差。  相似文献   

16.
高温高压下水和氯化钠溶液的物理化学性质研究徐有生(中国科学院地球化学研究所,贵阳550002)关键词高温高压水和NaCl溶液物理化学性质水和NaCl溶液是地质上最常见的溶液,了解其物理化学性质有助于研究水溶液在地球内部各种地质作用和地质过程中所起的作...  相似文献   

17.
We have compared quantitative characteristics of the macro- and microcomponent composition of pore solutions in bottom sediments obtained by their direct analysis and those calculated on the basis of the composition of water extracts taking into account water content of the samples. In the result of the study it was shown that the method of water extracts may be used to determine salinity and chemical composition of natural pore waters in low-permeable argillaceous deposits with different lithification rates. It was also shown that an analysis of water extracts does not allow determining the exact composition of the natural pore solution, but may be used for the evaluation (within the measurement error) of chlorine, sodium, and bromine content.  相似文献   

18.
塔河油田奥陶系油田水特征离子及意义   总被引:6,自引:0,他引:6       下载免费PDF全文
塔河油田奥陶系油田水的可溶物质主要成分与海水一致,表明其主要为海相成因.油田水中不同的离子组成、浓度及离子参数指示特定的地质意义:塔河7号区块与其他区块处于不同的水文系统;塔河油田奥陶系碳酸盐岩层中存在着大量的粘土矿物和胶结物,造成溶液具有相对高钙和低钠现象;钠氯系数、碳酸盐平衡系数、脱硫系数等在井间分布具有一定的规律性,总体上从南东向北西方向变化,反映了油气从满加尔坳陷向塔北地区运移的趋势.  相似文献   

19.
Compacted bentonite is used as sealing and buffer material in engineered barrier systems (EBS) of high-level radioactive waste repositories. The chemical characteristics of this clay and its porewater affect the migration of radionuclides eventually released from the waste. They also determine the integrity and long-term performance of the clay barriers. Key features are the structural negative charge and the large proportion of structural (interlayer) water of the main mineral montmorillonite, which leads to exclusion of anions and a surplus of cations in a large part of the porosity space. The objective of this contribution was to assess the impact of different porosity model concepts on porewater chemistry in compacted bentonite in the context of the planned Finnish spent nuclear fuel repository at Olkiluoto. First, a structural model based on well-established crystallographic and electrostatic considerations was set up to estimate the fractions of the different porosity types. In view of the uncertainty related to the chemical properties of the interlayer water, two very different model concepts (anion-free interlayer, Donnan space), together with a well-established thermodynamic model for bentonite, were applied to derive the porewater composition of the bentonite buffer at Olkiluoto. The simulations indicate very similar results in the “free” water composition for the two models and thus support the validity of the reference porewater concept commonly used in performance assessment of waste repositories. Differences between the models are evident in the composition of the water affected by the surface charge (i.e. diffuse double layer and interlayer). These reflect the conceptual uncertainty in current multi-porosity diffusion models.  相似文献   

20.
吕玺琳  方航  张甲峰 《岩土力学》2016,37(Z1):435-440
基于循环交通荷载下软黏土累积塑性变形、累积孔压经验公式与分层总和法结合的方法,通过计算不排水循环累积塑性变形引起的沉降和不排水循环累积孔压消散引起的固结沉降叠加,建立了一个软土路基长期沉降拟静力计算模型。对交通荷载应力路径下的软黏土空心圆柱扭剪试验数据分析,获得了不排水累积塑性应变模型和不排水累积孔压公式的参数。基于弹性理论解积分计算交通荷载下路基中的动应力,再结合分层总和法计算了路基沉降与循环周次的关系。通过工程实例分析,对比了计算沉降结果与实测结果并与以往理论分析结果,验证了所建立模型的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号