首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The solubility of REE(III) fluoride solids was determined in fluoride- and chloride-bearing solutions at 150, 200 and 250 °C and saturated water vapor pressure. These experimental data, together with experimental data from previously published studies, were used to evaluate formation constants for chloride- and fluoride-bearing aqueous species of the entire REE(III) group at temperatures up to 300 °C. The data show that the stability of these species differs significantly from that predicted theoretically. For example, contrary to the theoretical predictions, LREEF2+ species are more stable than HREEF2+ species at elevated temperature. The behavior of the chloride-bearing species is similar. Parameters for the Helgeson–Kirkham–Flowers (HKF) equation of state were determined for REEF2+, REECl2+ and REECl2+ complexes using these experimental data and permit calculation of formation constants of these species at conditions not investigated experimentally. These data now permit the mobility of all REE in fluoride- and chloride-bearing hydrothermal systems to be reliably evaluated at intermediate temperatures and pressures.  相似文献   

4.
The formation constants of neodymium complexes in chloride solutions have been determined spectrophotometrically at temperatures of 25 to 250°C and a pressure of 50 bars. The simple ion, Nd3+, is dominant at 25°C, whereas NdCl2+ and NdCl2+ are the dominant species at elevated temperatures. Equilibrium constants were calculated for the following reactions:Nd3+ + Cl = NdCl2+ β1,Nd3+ + 2 · Cl = NdCl+2 β2.The values of β1 were found to be identical within experimental error to the values reported by Gammons et al. (1996) but substantially different from those proposed by Stepanchikova and Kolonin (1999). The values of β2 obtained in this study agree relatively well with those of Gammons et al. (1996); differences are greatest at intermediate temperature and reach a maximum of one half an order of magnitude at 200°C.Theoretical estimates of β1 and β2 by Haas et al. (1995) using the revised Helgeson-Kirkham-Flowers (HKF) equation of state predict lower stability of NdCl2+ and NdCl2+ at temperatures above 150°C than determined in this study. A new fit to the HKF equation of state is therefore proposed, which yields values for β1 and β2 similar to those obtained experimentally.Using the formation constants reported in this study, we predict that typical seafloor hydrothermal vent fluids will contain a maximum concentration of Nd of ∼2 ppb. This value is several orders of magnitude lower than would be required to explain the levels of Nd mobility commonly reported for seafloor hydrothermal systems and suggests that other ligands may be more important than Cl in transporting rare earth elements in the Earth’s crust.  相似文献   

5.
The formation constants of neodymium complexes in sulfate solutions have been determined spectrophotometrically at temperatures of 30-250 °C and a pressure of 100 bars. The dominant species in the solution are NdSO4+ and Nd(SO4)2, with the latter complex being more important at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   

6.
Due to hydrolysis reactions, iron(III) forms oxyhydroxide precipitates in natural waters that minimise its availability to living organisms. Thermodynamic studies have established equilibrium concentrations of dissolved iron at various pH values, however these studies offer no insight into the kinetics of iron(III) polymerisation and subsequent precipitation. In recent work, the kinetics of iron(III) precipitation and dissolution of the precipitate have been investigated, but there are apparent discrepancies between the equilibrium solubility of iron(III) calculated from the kinetic parameters and its solubility measured by separation of the solid and dissolved phases at equilibrium. In this work, we reconcile kinetic and thermodynamic measurements using a polymer-based mechanistic model of the processes responsible for iron(III) precipitation in aqueous solutions based on a variety of previously published experimental data. This model is used to explain the existence of a solubility limit, including the effect of precipitate ageing on its solubility. We suggest that the model provides a unified approach for examining aqueous systems containing dissolved, solid-phase and surface species.  相似文献   

7.
The speciation of samarium (III) in chloride-bearing solutions was investigated spectrophotometrically at temperatures of 100-250 °C and a pressure of 100 bars. The simple hydrated ion, Sm3+, is predominant at ambient temperature, but chloride complexes are the dominant species at elevated temperatures. Cumulative formation constants for samarium chloride species were calculated for the following reactions:
  相似文献   

8.
The solubility of calcite in NaCl-H2O and in HCl-H2O fluids was measured using an extraction-quench hydrothermal apparatus. Experiments were conducted at 2 kbar, between 400° C and 600° C. Measurements in NaCl-H2O were conducted in two ways: 1) at constant pressure and NaCl concentration, as a function of temperature; and 2) at constant pressure and temperature, as a function of NaCl concentration. In both the NaCl-H2O and the HCl-H2O systems, the solubility of calcite increases with increasing chlorine concentrations. For example, the log calcium molality in equilibrium with calcite increases from –3.75 at 2 kbar and 500° C, in pure H2O to –3.10 at 2 kbar and 500° C at log NaCl molality=–1.67. At fixed pressure and NaCl molality, the solubility of calcite is almost constant from 400° C to 550° C, but increases somewhat at higher temperatures. The results can be used to determine the dominant calcium species in the experimental solutions as a function of NaCl concentration and to obtain values for the second dissociation constant of CaCl2(aq). At 2 kbar, 400° C, 500° C, and 600° C, we calculate values for the log of the dissociation constant of CaCl+ of –2.1, –3.2, and –4.3, respectively. The 400° C and 500° C values are consistent with those obtained by Frantz and Marshall (1982) using electrical conductance techniques. However, our 600° C value is 0.8 log units higher than that reported by Frantz and Marshall. The calcite solubilities in the NaCl-H2O and HCl-H2O systems are inconsistent with the solubilities of calcite in pure H2O reported by Walther and Long (1986). They are, however, consistent with the measurements of calcite solubilities in pure H2O presented in this study. These results allow for the calculation of the solubilities of calcium silicates and carbonates in fluids that contain CO2 and NaCl.  相似文献   

9.
The solubility of baddeleyite (ZrO2) and the speciation of zirconium have been investigated in HF-bearing aqueous solutions at temperatures up to 400 °C and pressures up to 700 bar. The data obtained suggest that in HF-bearing solutions zirconium is transported mainly in the form of the hydroxyfluoride species ZrF(OH)3° and ZrF2(OH)2°. Formation constants determined for these species (Zr4+ + nF + mOH = ZrFn(OH)m°) range from 43.7 at 100 °C to 46.41 at 400 °C for ZrF(OH)3°, and from 37.25 at 100 °C to 43.88 at 400 °C for ZrF2(OH)2°.Although the solubility of ZrO2 is retrograde with respect to temperature, the measured concentrations of Zr are orders of magnitude higher than those predicted from theoretical extrapolations based on simple fluoride species (ZrF3+-ZrF62−). Model calculations performed for zircon show that zirconium can be transported by aqueous fluids in concentrations sufficient to account for the concentration of this metal at conditions commonly encountered in fluoride-rich natural hydrothermal systems.  相似文献   

10.
The stability and structure of aqueous complexes formed by trivalent antimony (SbIII) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of SbIII hydroxide species, , at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, SbIII forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 < pH < 9). XAFS spectroscopy measurements show that in these species the central SbIII atom has a distorted pseudo-trigonal pyramidal geometry composed of the lone pair of 5s2 electrons of Sb and four oxygen atoms from two adjacent functional groups of the ligand (OC-OH and/or COH), forming a five-membered bidendate chelate cycle. Stability constants for these species, generated from Sb2O3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via hydroxy-carboxylic moieties, in the form of bidendate complexes. However, following the strong chemical affinity of SbIII for reduced sulfur, some undefined fraction of SbIII might also be bound to the minor thiol-bearing moieties of humic acids; further studies are required to check this hypothesis.  相似文献   

11.
The solubility of fluorite in NaCl solutions increases with increasing temperature at all ionic strengths up to about 100°C. Above this temperature, the solubility passes through a maximum and possibly a minimum with increasing temperature at NaCl concentrations of 1.0M or less, and increases continuously with increasing temperature at NaCl concentrations above 1.0M. At any given temperature, the solubility of fluorite increases with increasing salt concentration in NaCl, KCl and CaCl2 solutions. The solubility follows Debye-Hückel theory for KCl solutions. In NaCl and CaCl2 solutions, the solubility of fluorite increases more rapidly than predicted by Debye-Hückel theory: the excess solubility is due to the presence of NaFc, CaF+, and possibly of Na2F+. The solubility of fluorite in NaCl-CaCl2 and in NaCl-CaCl2-MgCl2 solutions is controlled by the common ion effect and by the presence of NaFc, CaF+, and MgF+. The solubility of fluorite in NaCl-HCl solutions increases rapidly with increasing initial HCl concentration; the large solubility increase is due to the presence of HFc. It seems likely that complexes other than those identified in this study rarely play a major role in fluoride transport and fluorite deposition at temperatures below 300°C.  相似文献   

12.
13.
Fluorite solubility in HCl and HF solutions with varied concentrations of boric acid was studied at 81, 155, and 208°C and saturated vapor pressure. Our experimental results demonstrate that fluorite solubility increases with increasing B(OH)3 concentration, and this was interpreted as the formation of the BF3OH–complex (Ryss, 1956). The experimental data were used to determine, using the OptimA software, the free energies of formation of HF°(aq) and, which were then used to calculate the constants of the reactions HF = H+ + F (1) and B(OH)3(aq) + 2H+ + 3 F (2). The pK 1 values are 3.71 ± 0.013, 4.28 ± 0.015, and 4.89 ± 0.017 and pK 2 13.60 ± 0.02, 13.99 ± 0.02, and 14.95 ± 0.03 at saturated vapor pressure and 81, 155, and 208°C, respectively.  相似文献   

14.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

15.
The speciation of Nd(III), Sm(III), and Er(III) in sulfate-bearing solutions has been determined spectrophotometrically at temperatures from 25 to 250 °C and a pressure of 100 bars. The data obtained earlier on the speciation of Nd in sulfate-bearing solutions (Migdisov et al., 2006) have been re-evaluated and corrected using a more appropriate activity model and are compared with the corresponding data for Sm(III) and Er(III) and new data for Nd(III). Based on this comparison, the dominant species in the solution are interpreted to be and , with the latter complex increasing in importance at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   

16.
The solubility of nantokite (CuCl(s)) and the structure of the predominant copper species in supercritical water (290-400 bar at 420 °C; 350-450 °C at 290 bar; 500 °C at 350 bar; density = 0.14-0.65 g/cm3) were investigated concurrently using synchrotron X-ray absorption spectroscopy (XAS) techniques. These conditions were chosen as they represent single phase solutions near the critical isochore, where the fluid density is intermediate of typical values for vapour and brine and is highly sensitive to even small changes in pressure. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS) analyses show that aqueous copper occurs in a slightly distorted linear coordination in the solutions studied, with an average of 1.35(±0.3) Cl and 0.65(±0.3) O neighbours. The solubility of CuCl(s) decreases exponentially with decreasing water density (i.e., decreasing pressure at constant temperature), in a manner similar to the solubility behaviour of salts such as NaCl in water vapour. Based on this similarity, an apparent equilibrium constant for the dissolution reaction of 0.5 ± 0.4 was calculated from a regression of the data at 420 °C, and it was determined that each Cu atom is solvated by approximately three water molecules. This indicates that under these conditions, copper solubility is controlled mainly by the structure of the second-shell hydration, which is essentially invisible to the XAS techniques used in this study.These results demonstrate that for a supercritical fluid near the critical isochore, decreasing pressure may initiate precipitation of copper even before boiling or phase separation. Such a process could be responsible for near-surface ore deposition in seafloor hydrothermal systems, where supercritical fluids experience rapid pressure changes during the transition between lithostatic and hydrostatic domains.  相似文献   

17.
The solubility of gold in hydrogen sulfide gas: An experimental study   总被引:1,自引:0,他引:1  
The solubility of gold in H2S gas has been investigated at temperatures of 300, 350 and 400 °C and pressures up to 230 bars. Experimentally determined values of the solubility of Au are 0.4-1.4 ppb at 300 °C, 1-8 ppb at 350 °C and 8.6-95 ppb at 400 °C. Owing to a positive dependence of the logarithm of the fugacity of gold on the logarithm of the fugacity of H2S, it is proposed that the solubility of Au can be attributed to formation of a solvated gaseous sulfide or bisulfide complex through reactions of the type:
(A)  相似文献   

18.
Model experiments were performed on the solubility of sulfide ores from the Kyzyl-Tashtyg deposit in distilled water and fulvic-acid (FA) solutions of different concentrations. It has been established that the oxidation of sulfide minerals in ores under atmospheric conditions might produce acid drainage waters with toxic heavy metals (Cu, Zn, Cd). The influence of natural organic acids depends on the capability of ore and host rock to neutralize the acidity of solutions. If carbonate content is enough at the first stage, a considerable increase in the pH value of FA-free solutions ensures Fe and Cu removal into the solid phase, whereas the formation of metal fulvate complexes hinders this process. However, when the rocks exhaust their neutralizing potential, all the solutions remain acidic for > 100 days of leaching. In this case, FAs, on the contrary, inhibit the oxidation of the surface of sulfide minerals and reduce the removal of heavy metals into the solution.  相似文献   

19.
Laboratory-scale-simulated experiments were carried out using Cr(III) solutions to identify the Cr(III) retention behavior of natural red earth (NRE), a natural soil available in the northwestern coastal belt of Sri Lanka. The effects of solution pH, initial Cr(III) concentration and the contact time were examined. The NRE showed almost 100 % Cr(III) adsorption within the first 90 min. [initial [Cr(III)] = 0.0092–0.192 mM; initial pH 4.0–9.0]. At pH 2 (298 K), when particle size ranged from 125 to 180 μm the Cr(III) adsorption data were modeled according to Langmuir convention assuming site homogeneity. The pH-dependent Cr(III) adsorption data were quantified by diffused layer model assuming following reaction stoichiometries: $$ \begin{aligned} 2\, {>}{\text{AlOH}}_{{({\text{s}})}} + {\text{ Cr }}\left( {\text{OH}} \right)_{{ 2\,({\text{aq}})}}^{ + } \, \to \, \left( { {>}{\text{AlO}}} \right)_{ 2} {\text{Cr}}_{{({\text{s}})}}^{ + } + {\text{ 2H}}_{ 2} {\text{O}} \quad {\text{log K 15}}. 5 6\\ 2\, {>}{\text{FeOH}}_{{({\text{s}})}} + {\text{ Cr}}\left( {\text{OH}} \right)_{{ 2\,({\text{aq}})}}^{ + } \, \to \, \left( { {>}{\text{FeO}}} \right)_{ 2} {\text{Cr}}_{{({\text{s}})}}^{ + } + {\text{ 2H}}_{ 2} {\text{O}}\quad {\text{log K 5}}.0 8.\\ \end{aligned} $$ The present data showed that NRE can effectively be used to mitigate Cr(III) from aqueous solutions and this method is found to be simple, effective, economical and environmentally benign.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号