首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用稳定同位素大气水平衡模式(iAWBM)的模拟数据,分析了在不同的下垫面蒸发和不同的凝结分馏条件下降水中δ18O的时间变化、降水量效应、负温度效应和大气水线。并通过与长沙站5年实测数据的比较以及模拟试验结果之间的相互比较,揭示下垫面蒸发水汽中稳定同位素的季节性变化和云中稳定同位素分馏对降水中稳定同位素变化的可能影响,增进对季风区水稳定同位素效应的理解和认识。iAWBM给出的4个模拟试验均很好地再现了监测站降水中δ18O的时间变化,模拟出季风区降水中稳定同位素在暖半年被贫化、在冷半年被富集的基本特点。与平衡分馏相比,动力分馏下降水中稳定同位素被贫化的程度加强、季节差和离散程度减小;由下垫面蒸发水汽中稳定同位素δe季节性变化所引起的降水中稳定同位素的变化在不同季节完全相反:在长沙,暖半年降水中δ18O更低,冷半年降水中δ18O更高,使得降水中稳定同位素季节差和离散程度增大。4个模拟试验均很好地再现了季风区的降水量效应和负温度效应。与平衡分馏相比,动力分馏下模拟的降水量效应和负温度效应的斜率相对较小;δe季节性变化导致模拟的降水量效应和负温度效应的斜率增大。利用iAWBM,模拟出季风区湿热气候条件下的MWL。动力分馏以及δe季节变化均使模拟得到的MWL的斜率和截距减小。  相似文献   

2.
Ion-exchange fractionation of copper and zinc isotopes   总被引:5,自引:0,他引:5  
Whether transition element isotopes can be fractionated at equilibrium in nature is still uncertain. Standard solutions of Cu and Zn were eluted on an anion-exchange resin, and the isotopic compositions of Cu (with respect to Zn) of the eluted fractions were measured by multiple-collector inductively coupled plasma mass spectrometry. It was found that for pure Cu solutions, the elution curves are consistent with a 63Cu/65Cu mass fractionation coefficient of 0.46‰ in 7 mol/L HCl and 0.67‰ in 3 mol/L HCl between the resin and the solution. Batch fractionation experiments confirm that equilibrium fractionation of Cu between resin and 7 mol/L HCl is ∼0.4‰ and therefore indicates that there is no need to invoke kinetic fractionation during the elution. Zn isotope fractionation is an order of magnitude smaller, with a 66Zn/68Zn fractionation factor of 0.02‰ in 12 mol/L HCl. Cu isotope fractionation results determined from a chalcopyrite solution in 7 mol/L HCl give a fractionation factor of 0.58‰, which indicates that Fe may interfere with Cu fractionation.Comparison of Cu and Zn results suggests that the extent of Cu isotopic fractionation may signal the presence of so far unidentified polynuclear complexes in solution. In contrast, we see no compelling reason to ascribe isotope fractionation to the coexistence of different oxidation states. We further suggest that published evidence for iron isotopic fractionation in nature and in laboratory experiments may indicate the distortion of low-spin Fe tetrahedral complexes.The isotope geochemistry of transition elements may shed new light on their coordination chemistry. Their isotopic fractionation in the natural environment may be interpreted using models of thermodynamic fractionation.  相似文献   

3.
High-precision Ni isotopic variations are reported for the metal phase of equilibrated and unequilibrated ordinary chondrites, carbonaceous chondrites, iron meteorites, mesosiderites, and pallasites. We also report new Zn and Cu isotopic data for some of these samples and combine them with literature Fe, Cu, and Zn isotope data to constrain the fractionation history of metals during nebular (vapor/solid) and planetary (metal/sulfide/silicate) phase changes.The observed variations of the 62Ni/58Ni, 61Ni/58Ni, and 60Ni/58Ni ratios vary linearly with mass difference and define isotope fractionation lines in common with terrestrial samples. This implies that Ni was derived from a single homogeneous reservoir. While no 60Ni anomaly is detected within the analytical uncertainties, Ni isotopic fractionation up to 0.45‰ per mass-difference unit is observed. The isotope compositions of Ni and Zn in chondrites are positively correlated. We suggest that, in ordinary chondrites, exchange between solid phases, in particular metal and silicates, and vapor followed by mineral sorting during accretion are the main processes controlling these isotopic variations. The positive correlation between Ni and Zn isotope compositions contrasts with a negative correlation between Ni (and Zn) and Cu isotope compositions, which, when taken together, do not favor a simple kinetic interpretation. The observed transition element similarities between different groups of chondrites and iron meteorites are consistent with the genetic relationships inferred from oxygen isotopes (IIIA/pallasites and IVA/L chondrites). Copper is an exception, which we suggest may be related to separate processing of sulfides either in the vapor or during core formation.  相似文献   

4.
The hydrogen isotopic measurement (δD) of the non-exchangeable hydrogens in herbivore bone collagen has potential for paleoclimate research. We have developed the methodology for extracting the hydrogen from collagen for isotopic analysis and for correcting the δD results for hydrogen exchange. Preparations of whole bone powders, demineralized bone, or gelatin extracts from fresh bone samples all give reliable δD results and have isotopic results, yields, and proportions of exchangeable hydrogens consistent with that expected for collagen. Gelatin extraction for removal of contaminants remains a valuable option for the study of fossil bone samples.Vacuum preheating under good vacuum at 150°C for two days for whole bone powders and at 100°C for one day for gelatins is an important step to remove all adsorbed water before samples are oxidized for isotopic analysis. Of the remaining hydrogens released following oxidation, 20.5% in whole bone powders and 23.1% in gelatin extracts exchange with laboratory atmospheric water vapor within 48 hours. The δD results can be corrected for this exchange and for minor effects of sample preparation by using a calibration bone standard to determine the δD value of laboratory water vapor.  相似文献   

5.
In this study, with the method of vacuum extraction, two evaporative processes of soil water and free water under equilibrium condition were simulated. For each sample, water vapor was condensed by liquid nitrogen and was collected in four time intervals. From the analysis of hydrogen and oxygen isotopic compositions of the water collected at different times, it was discovered that the isotope fractionation of soil water also follows the mode, which is just the same as the evaporative process of free water. The relationship between the stable hydrogen and oxygen isotopes in residual water showed that the simulative evaporation line was close to the global meteoric water line (GMWL) under the equilibrium condition at about 20°C. Comparison of the two types of evaporative processes indicated that the isotope fractionation and evaporation velocity of soil water were only slightly modified by the Van der Waals force.  相似文献   

6.
利用稳定同位素大气水平衡模式(iAWBM),在一个水平衡和水稳定同位素平衡的框架下以及在相同的气象驱动下,模拟在不同的下垫面蒸发和不同的云中凝结分馏条件下降水中稳定同位素效应的空间分布特征,并通过与GNIP实测数据的比较以及模拟试验结果之间的相互比较,揭示云中的稳定同位素分馏和从下垫面蒸发的水汽同位素δe对降水中稳定同位素变化的可能影响,增进对全球水循环中稳定同位素效应的理解和认识。结果显示:iAWBM的4个模拟试验均很好地再现了全球降水中平均δ18O和平均δ18O季节差的空间分布特征;很好地模拟了降水同位素的温度效应、降水量效应的分布特点以及全球的大气水线MWL;比较而言,平衡分馏假设下模拟的全球降水中平均δ18O的空间分布与根据GNIP数据得到的实际空间分布以及模拟的全球MWL与实际MWL最接近,且模拟效果亦最好;动力分馏假设下模拟的降水中δ18O平均季节差的空间分布与根据GNIP数据得到的实际分布之间的相关程度较好,且拟合水平明显提高;在动力分馏和δe季节性的假设下,iAWBM再现全球δ18O-T和δ18O-P相关关系空间分布的能力较强。  相似文献   

7.
稳定同位素分馏的蒸汽压效应(vaporpressureisotopeeffects,简称VPIE),在地球化学和天体化学上有着非常重要的研究意义。大部分情况下,由于轻重同位素体具有不同的蒸汽压,在经历挥发和蒸发过程时,含有重同位素的物种挥发得慢,轻同位素物种挥发得快,最终结果导致凝聚相富集重同位素,气相含有较多的轻同位素。在地球化学上,VPIE直接同非常重要的地学参数——同位素平衡分馏系数仅联系在一起。本文应用Bigeleisen提出的方法,直接将VPIE和约化配分函数比(RPFR)相联系,只需要通过理论计算获得两种物质的简谐振动频率,就能够得到非高压情况下该物质的VPIE。本文以水和硫镉矿(CdS)为例,详细介绍了如何计算蒸发和气化过程VPIE的方法,并指出了其在天体化学和矿床学中的一些潜在应用。  相似文献   

8.
Experiments exposing Type B calcium-, aluminum-rich inclusion (CAI)-like melts at high temperatures to high vacuum or reducing hydrogen-rich gas mixtures were used to determine the rates and consequences of elemental and isotopic fractionation by evaporation. Silicon and magnesium were found to evaporate much faster than calcium and aluminum, and the resulting residual liquid trajectories in composition space are reproduced via a thermodynamic model for the saturation vapor pressure of the evaporating species. Isotopic fractionations associated with evaporation were measured for magnesium. The resulting relationship between fraction of magnesium lost and enrichment of the residue in the heavy isotopes of magnesium follows a Rayleigh fractionation curve with a fractionation factor that is close to, but not exactly, the theoretically expected value. The rate of evaporation is found to be a strong function of temperature, oxygen fugacity, and melt composition, which can be understood and modeled in terms of the dependence of the saturation vapor pressures on these variables. The relationship between evaporation rate, which we measure, and calculated saturation vapor involves empirical evaporation coefficients that we find to be significantly less than one (∼0.1). Analytical and numerical models are used to characterize how diffusion in both the melt and in the surrounding gas affects evaporation rates and the degree of chemical and isotopic fractionation. The experimental data and theoretical considerations are combined to give a parameterization of the rates and consequences of evaporation of Type B CAI-like liquids, which is then used to translate the measured isotopic fractionation of Type B CAIs into constraints on their thermal history. Cooling rates of the order of 10°C per hour are indicated.  相似文献   

9.
Fundamental knowledge of the isotopic fractionation between the hydration water and the mother solution and whether the primary information recorded in hydration water can be preserved or not in deposits or mines have long been unclear. In order to calculate the accurate hydrogen and oxygen isotopic fractionation factors between gypsum hydration water and its mother solution with new methods, to understand the mechanism of fractionation and synthetically assess the record-keeping abilities of the isotopic composition of hydration water during the process of diagenesis after deposition, experiments on the hydrogen and oxygen isotopic compositions of gypsum hydration water and its mother solution at different isothermal temperatures from 5 to 50°C were systematically conducted. In addition, samples from two typical gypsum deposits formed in different environmental conditions were also determined. Results show that during gypsum crystallisation, both hydrogen and oxygen isotopes show significant fractionation between the hydration water and the mother solution. The calculated hydrogen isotopic fractionation factors are <1, while the oxygen isotopic fractionation factors are >1 at temperatures from 5 to 50°C. The fractionation factors show no functional relationships with temperature. Isotopic compositions of gypsum hydration water in arid lake sediments can be used to trace the source of water and primary deposit environmental information. However, the isotopic composition of the gypsum hydration water can easily be altered by dissolution and secondary precipitation of gypsum during later diagenesis, particularly in areas with humid climate and abundant groundwater. A very careful assessment on record-keeping abilities of the primary isotopic composition of hydration water in gypsum during later diagenesis must be considered before application.  相似文献   

10.
Oxygen isotope fractionation factors between calcium carbonates and water have been applied to ancient marine geochemistry principally for the purpose of geothermometry. The problem was encountered, however, with respect to the direction and magnitude of oxygen isotope fractionation between calcite and aragonite at thermodynamic equilibrium. This basically involves sound understanding of both thermodynamics and kinetics of oxygen isotope fractionation between inorganically precipitated carbonate and water at low temperatures. Thus the crucial issues are to acknowledge the processes of chemical reaction and isotopic exchange during precipitation of CaCO3 minerals in solution, the kinetic mechanism of isotope equilibrium or disequilibrium, the effect of polymorphic transition from metastable aragonite to stable calcite under hydrous or anhydrous conditions, and the presence or absence of isotope salt effect on oxygen isotope exchange between carbonate and water in response to the hydrous or anhydrous conditions at thermodynamic equilibrium. Because good agreements exist in carbonate–water oxygen isotope fractionation factors between theoretical calculations and experimental determinations, it is encouraging to applying the thermodynamic and kinetic data to isotopic paleothermometry and geochemical tracing.  相似文献   

11.
Twelve goethite samples with different degrees of substitution of Al for Fe were synthesized at 22-48 °C and pH values of 1.5-14 under closed system conditions and used to study the effects of Al substitution on the hydrogen isotopic fractionation between goethite and its ambient water. The syntheses followed two pathways: (1) Fe3+ hydrolysis in high pH aqueous solutions; (2) oxidation of Fe2+ to Fe3+ in mid to low pH solutions. XRD and SEM analyses indicated that, irrespective of temperature and pH, goethite was the predominant product of the syntheses in all of the experiments (with degrees of Al substitution as high as ∼13 mol %). “High temperature nonstoichiometric” (HTN) water is present in all of the samples and rapidly exchanges D/H with ambient vapor at room temperature. Uncertainties in the value of the apparent D/H fractionation factor (αe-v) between HTN water and ambient exchange water at 22 °C lead to significant uncertainties in determinations of the δD values of structural hydrogen (δDs) in goethites which contain high proportions of HTN water. As determined for the samples of this study, αe-v has a nominal value of 0.942 (±0.02). δDs values determined using an αe-v value of 0.942 indicate that Al substitution increases the δD value of structural hydrogen in goethite by about 1.4 (±0.4)‰ for each increase in Al of 1 mol %. This dependence on Al is of the same sign as, but somewhat larger in magnitude than, the effect of Al predicted by a published model (∼0.7‰ per mol % Al). The overall uncertainties in the current results suggest that an increase of ∼1‰ per mol % Al, as adopted by previous studies, may be a reasonable estimate with which to adjust δ Ds values of natural goethites to those of the pure FeOOH endmember and could be valid for degrees of Al substitution of up to at least 15 mol %. These synthesis experiments also yield a hydrogen isotopic fractionation factor (DαG-W) between pure goethite (α-FeOOH) and liquid water of 0.900 (±0.006), which is analytically indistinguishable from the published value of 0.905 (±0.004). Thus, use of an DαG-W value of 0.905 in applications to the FeOOH component of natural goethites is supported by the current study.  相似文献   

12.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

13.
西藏羊八井地热田硼同位素地球化学特征初步研究   总被引:4,自引:0,他引:4       下载免费PDF全文
基于国外大量硼同位素示踪的地热研究实例,在先期建立的MC-ICP-MS测定水中硼同位素分析方法基础上,以羊八井地热田为研究对象,进行了热田地热流体的硼同位素地球化学初步研究。研究表明,羊八井地热田区热储流体的硼同位素值为 -10.5‰~-9.1‰,为非海相来源; 结合区域地质特征,研究认为热储内的硼组分来源于蚀变花岗岩围岩,并且蚀变花岗岩的硼同位素特征可能与深层地热流体相似。研究表明羊八井浅层热储内硼元素的地球化学行为并非完全是保守元素,存在着一定的硼同位素分馏。在端元硼同位素特征差异较小的羊八井热田,为硼同位素二元混合模型示踪水体混合过程带来了相当的复杂性。本文从热田开采过程与采样时间、水-岩相互作用、气-液相分离以及结垢过程等方面分析了浅层热储内引起硼同位素分馏的可能因素,其中从整体来看,气-液相分离过程的影响相对较大;而在个别井位水-岩相互作用与结垢的影响可能相对较为显著。  相似文献   

14.
Carbon isotopic fractionation during the air/sea exchange process is not fully understood at present. Information on the equilibrium and kinetic fractionation factors is an essential requirement, together with the value of the CO2 partial pressure, for understanding the carbon cycle in the atmosphere and marine environments. Using a specially designed countercurrent equilibrator system, the fractionation factors between gaseous CO2 and dissolved inorganic carbon in sea water were determined under both kinetic and equilibrium conditions. The following results were obtained: kinetic fractionation factor for air to sea (αas) is 0.998 at 288.2 K; kinetic fractionation factor for sea to air (αsa) is 0.990; equilibrium fractionation factor (αeq) is 0.991 at pH = 8.3 and 288.2 K. From these results, the carbon isotopic ratio of CO2 passed through the air/ sea interface is estimated to be about ?10 %. for air to sea and ?8 %. for sea to air when CO2 exchange takes place between air (δ13C = ?8 %.) and surface sea water (δ13C = 2 %.) at 288.2 K.  相似文献   

15.
水体蒸发过程中稳定同位素分馏的模拟   总被引:13,自引:3,他引:13  
通过对非平衡条件下水体蒸发中稳定同位素分馏机制的分析, 模拟了蒸发水体中稳定同位素比率的变化及与温度、大气湿度的关系. 在瑞利模式中, 剩余水中的稳定同位素随剩余水比例f的减小不断富集, 富集的速率与温度呈反比. 在动力蒸发条件下, 稳定同位素的分馏不仅与相变温度有关, 而且受大气湿度和液-气相之间物质交换的影响. 在动力蒸发过程中, 相对湿度越小, 剩余水中稳定同位素比率随 f的变化越快. 当相对湿度较大时, 在经历了一段时间蒸发后的剩余水中的δ将不随 f变化. 蒸发水体达到稳定状态的速率主要取决于大气的相对湿度. 当温度约20℃时, 在瑞利平衡条件下模拟的蒸发线与全球大气水线较接近. 在非平衡蒸发条件下, 蒸发线的梯度项和常数项与温度和相对湿度呈正比.  相似文献   

16.
干酪根中不同结构和官能团具有不同的碳同位素组成,这种差异可以用有机质碳同位素热力学同位素因子(β因子)进行预测。煤岩模拟实验产物中,δ13CCO2相对烃类气体而言明显偏重,这与干酪根中羧基的β13C较大有关。含水实验产物的δ13CCO2轻于无水实验产物的δ13CCO2是由于含水实验中所增加CO2的碳同位素组成相对较轻造成的,含水实验增加的CO2产率是由β13C相对较小的部分亚甲基碳通过断裂、氢转移、以及与水反应转变而来。模拟实验低温阶段(≤300℃),甲氧基中的甲基断裂可能的甲烷形成的主要方式。而甲氧基的β13C大于甲基,所以低温阶段出现了甲烷碳同位素组成先较重后变轻的现象。  相似文献   

17.
蒸发皿中水面蒸发氢氧同位素分馏的实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
气象要素与蒸发密切相关,通过室内外不同气象条件下的器皿水蒸发实验,获得了水面蒸发氢氧稳定同位素分馏因子与气象要素的关系。实验结果表明,随着蒸发的进行,剩余水体中逐渐富集重同位素;自由水体蒸发同位素分馏在垂线上有分层现象,表层水体同位素值比垂线平均的同位素值略富集;不同温度条件下的室内蒸发实验中,温度越高,液-气间分馏系数越小,相应于同一剩余水体体积比,剩余水体稳定同位素值则越低。室外器皿水自由蒸发实验中得出的蒸发线方程斜率较大地偏离了当地降水线,表明实验期间水体蒸发分馏作用较明显。该研究为进一步揭示水体蒸发分馏规律提供了可靠的实验依据。  相似文献   

18.
从同位素分馏的气-液相界面特征的视角出发,分析自然条件下水面蒸发和降水冷凝的同位素分馏过程存在的差异,分析表明降水氘剩余值产生的直接原因为水面蒸发过程与降水冷凝过程分别遵循动力学分馏与平衡分馏原理,而界面效应是决定蒸发-冷凝过程会否受到动力学过程影响的内因。水面蒸发过程的比界面面积较小,界面效应较大,水分子扩散作用显著,因此,自然条件下水面蒸发过程需要考虑水分子扩散的动力学过程,属于非平衡分馏;相反,降水冷凝过程的比界面面积巨大,界面效应影响很小,分馏基本不受分子扩散分馏影响,降水冷凝过程符合平衡分馏原理。用以上结论作为假设条件,模拟10~40℃从海水蒸发到降水冷凝的水循环过程,模拟结果与全球降水线相吻合,佐证了造成降水氘剩余产生的内在原因为水面蒸发过程与降水冷凝过程的界面效应不同的结论。  相似文献   

19.
硼是一种中等挥发性元素,具有11B和10B两个稳定同位素。两个同位素间高达10%的相对质量差使其在地质过程中引起高达-70‰至+75‰的硼同位素变化。硼在自然界主要与氧键合形成三配位(BO3)和四配位(BO4)结构,因而11B和10B间同位素分馏主要受控于三配体(BO3)和四面体(BO4)间配分。本文综述了低温和高温地质过程的硼同位素分馏的理论和实验研究进展。在溶液中B(OH)3和${B(OH)^{-}_{4}}$间硼同位素分馏受pH和热力学p-T条件控制,实验和理论表征获得常温常压条件下的B(OH)3和$B(OH)^{-}_{4}$间同位素分馏系数(α3-4)变化范围为1.019 4至1.033 3。低温条件下矿物(如碳酸盐、黏土矿物(蒙脱石和伊利石)、针铁矿、水锰矿、硼酸盐)与溶液间硼同位素分馏行为除了受p-T-pH影响外,矿物表面吸附引起的分馏效应十分显著。在中高温过程(蒙脱石伊利石化、富硼电气石和白云母矿物与热液流体,以及硅酸盐熔体与流体)中硼同位素分馏行为受到硼配位构型、化学成分以及物理化学条件的控制。随着硼同位素分馏机理研究的深入以及越来越完善的地质储库硼同位素端员特征表征,硼同位素地球化学指标可以灵敏示踪成矿物质来源、探究成矿作用与成因模式和重建成矿过程物理化学条件。目前矿床硼同位素地球化学研究的难点在于实现不同赋存相(如流体、矿物和熔体)中硼配位键合结构和硼同位素组成的精细化表征。  相似文献   

20.
Compound specific hydrogen isotope ratios (δD) of long chain sedimentary n-alkanes, which mostly originate from the leaf waxes of higher terrestrial plants, are increasingly employed as paleoclimate proxies. While soil water is the ultimate hydrogen source for these lipids and the isotopic fractionation during biosynthesis of lipids is thought to remain constant, environmental parameters and plant physiological processes can alter the apparent hydrogen isotopic fractionation between leaf-wax lipids and a plant’s source water. However, the magnitude and timing of these effects and their influence on the isotopic composition of lipids from higher terrestrial plants are still not well understood. Therefore we investigated the seasonal variability of leaf-wax n-alkane δD values for two different temperate deciduous forest ecosystems that are dominated by two different tree species, Beech (Fagus sylvatica) and Maple (Acerpseudoplatanus).We found significant seasonal variations for both tree species in n-alkane δD values of up to 40‰ on timescales as short as one week. Also, the isotopic difference between different n-alkanes from the same plant species did vary significantly and reached up to 50‰ at the same time when overall n-alkane concentrations were lowest.Since δD values of soil water at 5 and 10 cm depth, which we assume represent the δD value of the major water source for the investigated beech trees, were enriched in autumn compared to the spring by 30‰, whereas n-alkane δD values increased only by 10‰, we observed variations in the apparent fractionation between beech leaf derived n-alkanes and soil water of up to 20‰ on a seasonal scale. This observed change in the apparent fractionation was likely caused by differences in leaf water isotopic enrichment. Based on mechanistic leaf water models we conclude that changes in the isotopic difference between water vapor and soil water were the most likely reason for the observed changes in the apparent fractionation between n-alkanes and soil water.The large variability of n-alkane concentrations and δD values over time implies a continuous de novo synthesis of these compounds over the growing season with turnover times possibly as short as weeks. The signal to reach the soil therefore represents an integrated record of the last weeks before leaf senescence. This holds true also for the sedimentary record of small catchment lakes in humid, temperate climates, where wind transport of leaf-wax lipids is negligible compared to transfer through soil and the massive input of leaves directly into the lake in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号