首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.  相似文献   

2.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

3.
Isotopic fractionation factors for oxygen and silicon in selected silicates (quartz, enstatite, forsterite, lizardite, kaolinite) are calculated using first-principles methods based on density-functional theory. Good agreement between theory and experiment is found in the case of oxygen. In the case of silicon, agreement and differences with existing estimates of equilibrium fractionation factors are discussed. The relationship between silicon and oxygen fractionation factors, silicate polymerization degree and chemical composition is studied and compared with previous semi-empirical models.  相似文献   

4.
Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography-mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source.All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H2O at 31%. Values for αl/w, the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for αl/m, the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between −50 and −170‰, and sterols and hopanols with δD between −150 and −270‰.  相似文献   

5.
Oxygen isotope microanalyses of authigenic quartz, in combination with temperatures of quartz precipitation constrained by fluid inclusion microthermometry and burial history modelling, are employed to trace the origin and evolution of pore waters in three distinct reservoirs of the Brae Formation in the Miller and Kingfisher Fields (North Sea). Oxygen isotope ratios of quartz cements were measured in situ in nine sandstone thin sections with a Cameca ims-4f ion microprobe. In conjunction with quartz cement paragenesis in the reservoirs, constrained from textural and cathodoluminescence (CL) microscopy studies, pore water evolution was reconstructed from the time of deposition of the sandstones in the Upper Jurassic until the present.CL photomicrographs of quartz overgrowths in the Brae Formation sandstones show three cement zones (A, B and C) which can be related to different oxygen isotope compositions: (1) the earliest, and thinnest, zone A (homogeneous CL pattern with probable δ18O values between +23‰ and +26‰—direct measurements were not possible) precipitated in the sandstones at temperatures <60 °C; (2) the second zone B (complex CL pattern and directly measured δ18O values between +15‰ and +18‰) precipitated in the sandstones most likely between 70 and 90 °C; (3) the third zone C (homogeneous CL pattern and directly measured δ18O values between +16‰ and +22‰) precipitated in the sandstones most likely at temperatures >90 °C. Calculated oxygen isotope compositions of pore waters show that zone A quartz cements, and enclosing concretionary calcite, precipitated from a meteoric-type fluid (∼−7‰) during shallow burial (<1.5 km). Zone B quartz cements precipitated from fluids which evolved in composition from a meteoric-type fluid (δ18O −7‰) to a more 18O-enriched fluid (δ18O −4‰) as burial continued to ∼3.0 km. Data from zone C quartz cements are consistent with further fluid evolution from δ18O −4‰ to basinal-type fluids with δ18O similar to the present-day formation water oxygen isotope composition (+0.6‰ at 4.0 km burial). A similar pore water evolution can be derived for all three reservoirs studied, indicating that hydrogeologic evolution was similar across sandstones of the whole Brae Formation.The quartz cement zones observed in the Brae Formation sandstones, and the pore water history derived for the area studied, is analogous to published petrographic and pore water evolution data from the nearby Brent Group reservoirs and from reservoirs located in the Haltenbanken area on the Atlantic margin offshore Norway. Considering quartz cement is a major porosity-occluding phase in many reservoir sandstones, and because pore waters both dissolve quartz and carry the dissolved silica to cementation sites, the data presented are valuable for improving the understanding and prediction of reservoir quality development in sandstones globally.  相似文献   

6.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

7.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

8.
Fundamental knowledge of the isotopic fractionation between the hydration water and the mother solution and whether the primary information recorded in hydration water can be preserved or not in deposits or mines have long been unclear. In order to calculate the accurate hydrogen and oxygen isotopic fractionation factors between gypsum hydration water and its mother solution with new methods, to understand the mechanism of fractionation and synthetically assess the record-keeping abilities of the isotopic composition of hydration water during the process of diagenesis after deposition, experiments on the hydrogen and oxygen isotopic compositions of gypsum hydration water and its mother solution at different isothermal temperatures from 5 to 50°C were systematically conducted. In addition, samples from two typical gypsum deposits formed in different environmental conditions were also determined. Results show that during gypsum crystallisation, both hydrogen and oxygen isotopes show significant fractionation between the hydration water and the mother solution. The calculated hydrogen isotopic fractionation factors are <1, while the oxygen isotopic fractionation factors are >1 at temperatures from 5 to 50°C. The fractionation factors show no functional relationships with temperature. Isotopic compositions of gypsum hydration water in arid lake sediments can be used to trace the source of water and primary deposit environmental information. However, the isotopic composition of the gypsum hydration water can easily be altered by dissolution and secondary precipitation of gypsum during later diagenesis, particularly in areas with humid climate and abundant groundwater. A very careful assessment on record-keeping abilities of the primary isotopic composition of hydration water in gypsum during later diagenesis must be considered before application.  相似文献   

9.
The hydrogen isotope fractionation between kaolinite and water   总被引:1,自引:0,他引:1  
Hydrogen isotope fractionation factors between kaolinite and water were determined at temperatures between 200° and 352°C. Five-gram samples of kaolinite were heated in contact with 8-mg samples of water in sealed glass reaction tubes. Under these conditions the approach to equilibrium with time will be reflected primarily in the change of the δ D in the water. Also the δ D of the hydrogen in the kaolinite will be relatively constant, subject to minor corrections. About seventy sealed vessels were heated for various times at various temperatures. During four months of heating, ~ 25% of kaolinite hydrogen exchanged with the water at 200°C, whereas 100% exchanged at 352°C. The α-values were estimated assuming equilibrium between exchanged kaolinite and water. The 103lnα-values are estimated to be ?20, ?15, ?6 and +7 for 352°, 300°, 250° and 200°C, respectively, which are in approximate agreement with reported values previously determined at 400°C using conventional methods as well as those estimated from kaolinite in hydrothermally active systems. The curve representing the relationship between the hydrogen isotope fractionation factor for the kaolinite-water system and temperatures between 400° and 25°C is not monotonic but rather has a maximum at 200°C.  相似文献   

10.
Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (∼10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (∼3.8 Ga); Hamersley Group, Western Australia (∼2.5 Ga); Transvaal Group, South Africa (∼2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (∼1.9 Ga). Values of δ18O range from +7.9‰ to +27.5‰ and include the highest reported δ18O values for BIF quartz. Values of δ30Si have a range of ∼5‰ from −3.7‰ to +1.2‰ and extend to the lowest δ30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ30Si up to 3‰, similar to the range in δ30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ∼1 mm. We interpret differences in δ30Si between microlaminae as preserved from primary deposition. Silicon in BIF quartz is mostly of marine hydrothermal origin (δ30Si < −0.5‰) but silicon from continental weathering (δ30Si ∼ 1‰) was an important source as early as 3.8 Ga.  相似文献   

11.
Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and n-butane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples from two seep areas were each slurried with sea water and treated with C1, C2, C3 or C4, or with mixtures of all four gases. Triplicate samples were incubated aerobically at 15 °C, and the stable isotope composition and headspace levels of C1-C4 were monitored over the course of the experiment. Oxidation was observed for all C1-C4 gases, with an apparent preference for C3 and C4 over C1 and C2 in the mixed-gas treatments. Fractionation factors were calculated using a Rayleigh model by comparing the δ13C and δD of the residual C1-C4 gases to their headspace levels. Carbon isotope fractionation factors (reported in ε or (α-1) × 1000 notation) were consistent between seep areas and were −26.5‰ ± 3.9 for C1, −8.0‰ ± 1.7 for C2, −4.8‰ ± 0.9 for C3 and −2.9‰ ± 0.9 for C4. Fractionation factors determined from mixed gas incubations were similar to those determined from individual gas incubations, though greater variability was observed during C1 consumption. In the case of C1 and C3 consumption, carbon isotope fractionation appears to decrease as substrate becomes limiting. Hydrogen isotope fractionation factors determined from the two seep areas differed for C1 oxidation but were similar for C2 and C3. Hydrogen isotope fractionation factors ranged from −319.9‰ to −156.4‰ for C1 incubations, and averaged −61.9‰ ± 8.3 for C2 incubations and −15.1‰ ± 1.9 for C3 incubations. The fractionation factors presented here may be applied to estimate the extent of C1-C4 oxidation in natural gas samples, and should prove useful in further studying the microbial oxidation of these compounds in the natural environment.  相似文献   

12.
Hydrogen isotope ratios were measured on n-alkanes (n-C12 to n-C31) extracted from recent lake surface sediments along a N-S European transect to test if modern climate variability is recorded in these biomarkers. δD values of the n-alkanes are compared to δD values of meteoric water from the IAEA-GNIP database spanning a range from −119‰ in northern Sweden to −41‰ in southern Italy, to lake water δD values, and to mean annual temperatures, varying between −2.0°C in the north and 13.7°C in the south.δD values of the short-chained n-alkanes n-C12 to n-C20, excluding algal derived n-C17 and n-C19, are higher in the north and lower in the south. The isotopic fractionation ε for hydrogen between meteoric water and the short-chained n-alkanes is increasing from N to S by more than 100‰ and is significantly correlated to mean annual temperature for n-C16 and n-C18. This suggests that these n-alkanes may originate from a different source in the northern lakes, possibly due to petroleum contamination, or are synthesized using a different biochemical pathway.The n-C17 and n-C19 alkanes of algal origin, the n-C21 and n-C23 alkanes originating from water plants, and the long-chain n-alkanes n-C25, n-C27, n-C29, and n-C31 of terrestrial origin, clearly correlate with δD values of meteoric water, lake water, and mean annual temperature, indicating that they excellently record the δD value of meteoric water. The mean hydrogen isotope fractionation εC17/w of −157‰ (SD = 13) between n-C17 and meteoric water is fairly constant over the wide range of different climates and lake environments, suggesting only minor influence of environmental factors on this biochemical fractionation. This suggests that δD values of n-C17 are suitable to reconstruct the isotopic composition of source water. The mean fractionation between the long-chain n-alkanes and water is −128‰ (SD = 12). The mean difference of 31‰ between both ε values is likely due to evaporative enrichment of deuterium in the leaf water. If this is the only influence on the enrichment, the difference between the δD values of terrestrial and aquatic compounds might be suitable to reconstruct terrestrial evapotranspiration of the lake environment.  相似文献   

13.
To better understand the isotope biogeochemistry of paddy field CH4, we investigated carbon and hydrogen isotope fractionation during CO2 reduction by a methanogenic community enriched from California paddy field soil and rice plants. Results from analyses of terminal restriction fragment length polymorphism (T-RFLP) and sequences of the archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) showed a difference in methanogenic community structure between the soil (dominated by Methanobacteriaceae) and roots (dominated by Methanospirillaceae) which was essentially the same for sampling dates 15 and 99 days after flooding (DAF). CO2/H2 methanogenesis by these microbial communities produced CH4 with different isotope ratios and fractionation factors (α factors). The carbon isotope α factors in an open system with a continuous supply of 0.5% H2 were 1.050 ± 0.002 and 1.057 ± 0.001 for soil and root enrichment cultures at 15 DAF, and 1.052 ± 0.0.002 and 1.059 ± 0.002 for soil and root enrichment cultures at 99 DAF, respectively. These α factors are similar to, but distinct from values previously obtained from cultures of mesophilic methanogens and are larger than calculated values (1.045) for paddy soil. Fractionation of hydrogen isotopes was also studied in a closed system under 80% H2. The difference in α factors between soil and root enrichment cultures remained clear. The hydrogen isotope fractionations between culture water and the product CH4 were −327 ± 14‰ and −319 ± 18‰ for soil enrichments, and −389 ± 17‰ and −382 ± 21‰ for root enrichments at 15 DAF and 99 DAF, respectively.  相似文献   

14.
The silicon isotope fractionation between rice plant and nutrient solution was studied experimentally. Rice plants were grown to maturity with the hydroponic culture in a naturally lit glasshouse. The nutrient solution was sampled for 14 times during the whole rice growth period. The rice plants were collected at various growth stages and different parts of the plants were sampled separately. The silica contents of the samples were determined by the gravimetric method and the silicon isotope compositions were measured using the SiF4 method.In the growth process, the silicon content in the nutrient solution decreased gradually from 16 mM at starting stage to 0.1-0.2 mM at harvest and the amount of silica in single rice plant increased gradually from 0.00013 g at start to 4.329 g at harvest. Within rice plant the SiO2 fraction in roots reduced continuously from 0.23 at the seedling stage, through 0.12 at the tiller stage, 0.05 at the jointing stage, 0.023 at the heading stage, to 0.009 at the maturity stage. Accordingly, the fraction of SiO2 in aerial parts increased from 0.77, through 0.88, 0.95, 0.977, to 0.991 for the same stages. The silicon content in roots decreased from the jointing stage, through the heading stage, to the maturity stage, parallel to the decrease of silicon content in the nutrient solution. At the maturity stage, the silicon content increased from roots, through stem and leaves, to husks, but decreased drastically from husks to grains. These observations show that transpiration and evaporation may play an important role in silica transportation and precipitation within rice plants.It was observed that the δ30Si of the nutrient solution increased gradually from −0.1‰ at start to 1.5‰ at harvest, and the δ30Si of silicon absorbed by bulk rice plant increased gradually from −1.72‰ at start to −0.08‰ at harvest, reflecting the effect of the kinetic silicon isotope fractionation during silicon absorption by rice plants from nutrient solutions. The calculated silicon isotope fractionation factor between the silicon instantaneously absorbed by rice roots and the silicon in nutrient solution vary from 0.9983 at start to 0.9995 at harvest, similar to those reported for bamboo, banana and diatoms in direction and extent. In the maturity stage, the δ30Si value of rice organs decreased from −1.33‰ in roots to −1.98‰ in stem, and then increased through −0.16‰ in leaves and 1.24‰ in husks, to 2.21‰ in grains. This trend is similar to those observed in the field grown rice and bamboo.These quantitative data provide us a solid base for understanding the mechanisms of silicon absorption, transportation and precipitation in rice plants and the role of rice growth in the continental Si cycle.  相似文献   

15.
The fractionation of lithium isotopes among quartz, muscovite, and a chloride-bearing aqueous fluid has been investigated experimentally at 400°-500°C and 50-100 MPa. Experiments were performed for 15-60 days in cold seal vessels with natural mineral specimens. Lithium was introduced primarily through the fluid, which also contained KCl and HCl. In most runs, the fluid was prepared with the L-SVEC standard (δ7Li = 0) and was 1 M in total chloride with K/Li/H = 100/10/1. In two experiments, a 6Li spike was employed. The experiments demonstrate that quartz and muscovite are susceptible to pronounced, rapid shifts in Li isotopic composition by diffusion through interaction with a Li-bearing fluid, particularly at 500°C. At 500°C, fractionation factors were determined to be Δquartz-aqueous ≅ +8 to + 12‰ and Δmuscovite-aqueous ≅ +18 to + 20‰. An intermineral fractionation factor is given by Δmuscovite-quartz ≈ +9‰. At 400°C, the results suggest Δquartz-aqueous ≈ +4 to + 6‰. The study provides evidence of systematic fractionation in lithium isotopes at the temperatures of some magmatic processes, such as those associated with porphyry-type ore systems and pegmatites.  相似文献   

16.
Germanium-silicon (Ge/Si) ratios were determined on quartz diorite bedrock, saprolite, soil, primary and secondary minerals, phytolith, soil and saprolite pore waters, and spring water and stream waters in an effort to understand Ge/Si fractionation during weathering of quartz diorite in the Rio Icacos watershed, Puerto Rico. The Ge/Si ratio of the bedrock is 2 μmol/mol, with individual primary mineral phases ranging between 0.5 and 7 μmol/mol. The ratios in the bulk saprolite are higher (∼3 μmol/mol) than values measured in the bedrock. The major saprolite secondary mineral, kaolinite, has Ge/Si ratios ranging between 4.8 and 6.1 μmol/mol. The high Ge/Si ratios in the saprolite are consistent with preferential incorporation of Ge during the precipitation of kaolinite. Bulk shallow soils have lower ratios (1.1-1.6 μmol/mol) primarily due to the residual accumulation of Ge-poor quartz.Ge/Si ratios measured on saprolite and soil pore waters reflect reactions that take place during mineral transformations at discrete depths. Spring water and baseflow stream waters have the lowest Ge/Si ratios (0.27-0.47 μmol/mol), reflecting deep initial weathering reactions resulting in the precipitation of Ge-enriched kaolinite at the saprolite-bedrock interface. Mass-balance calculations on saprolite require significant loss of Si and Al even within 1 m above the saprolite-bedrock interface. Higher pore water Ge/Si ratios (∼1.2 μmol/mol) are consistent with partial dissolution of this Ge-enriched kaolinite. Pore water Ge/Si ratios increase up through the saprolite and into the overlying soil, but never reach the high values predicted by mass balance, perhaps reflecting the influence of phytolith recycling in the shallow soil.  相似文献   

17.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   

18.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

19.
Saline groundwaters were recovered from undisturbed (Restigouche deposit) and active (Brunswick #12 mine) Zn-Pb volcanogenic massive sulfide deposits in the Bathurst Mining Camp (BMC), northern New Brunswick, Canada. These groundwaters, along with fresh to brackish meteoric ground and surface waters from the BMC, have been analyzed to determine their major, trace element and stable isotopic (O, H, C, and B) compositions. Saline groundwaters (total dissolved solids = 22-45 g/L) are characterized by relatively high Na/Ca ratios compared to brines from the Canadian Shield and low Na/Clmolar and δ11B isotopic compositions (−2.5‰ to 11.1‰) compared to seawater. Although saline waters from the Canadian Shield commonly have oxygen and hydrogen isotopic compositions that plot to the left of the global meteoric water line, those from the BMC fall close to the water line. Fracture and vein carbonate minerals at the Restigouche deposit have restricted carbon isotopic compositions of around −5‰ to −6‰. The carbon isotopic compositions of the saline waters at the Restigouche deposit (+12‰ δ13CDIC) are the result of fractionation of dissolved inorganic carbon by methanogenesis. We suggest that, unlike previous models for shield brines, the composition of saline waters in the BMC is best explained by prolonged water-rock reaction, with no requirement of precursor seawater. We suggest that elevated Br/Cl ratios of saline waters compared to seawater may be explained by differential uptake of Br and Cl during groundwater evolution through water-rock reaction.  相似文献   

20.
The equilibrium hydrogen isotope fractionation factor (α) between kaolinite and water in the temperature range 330 to 0°C is 1000 In αkaol-water = −2.2 × 106T−2 − 7.7. This monotonic expression is based on a combination of experimental data with >75% of exchange and empirical calibrations. The previously proposed and widely accepted complex fractionation expression is considered to reflect the role of surface and intersite fractionation effects in the low percent of exchange experiments(Liu and Epstein, 1984), and incorrect δD water values for the empirical values (Lambert and Epstein, 1980). There is no measurable fractionation between dickite and kaolinite. The temperature dependence of the kaolinite-water hydrogen isotope fractionation factor can probably be used as a model for other phyllosilicate-water systems below 350°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号