首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   

2.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

3.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

4.
Abstract Compositional variation of silicates (plagioclase, K-feldspar, epidote, titanite, garnet, white mica, biotite, chlorite), ilmenite, carbonates (calcite, ankerite) and apatite, in quartzofeldspathic lithologies of the Alpine Schist, New Zealand, is discussed in terms of increasing metamorphic grade and possible isograd-producing reactions. The mineral data, in conjunction with geological considerations, are used to determine polychronous P-T arrays of an early high P/T event (c. 16°C/kb; 5°C/km) overprinted by a lower P/T event (c. 50°C/kb; 15°C/km) that provides an estimation of Mesozoic and Cenozoic exhumation of schist of 11 to 13 km and 19 to 22 km respectively. The effects of possible shear heating and recrystallization to form K-feldspar zone schist near the Alpine Fault is consistent with movement along a mid to lower crustal detachment surface during Cenozoic shortening, and near isothermal exhumation of the schists to form the Southern Alps.  相似文献   

5.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

6.
Ultrahigh-pressure metamorphism and tectonics   总被引:11,自引:0,他引:11  
Abstract Recognition of several ultrahigh-pressure (UHP) metamorphic terranes in continental collision belts has revolutionized the concept of geodynamic processes. In order to facilitate better communication and focus among active investigators, the Task Group III-6 of the International Lithosphere Program'Ultrahigh-Pressure Metamorphism and Geodynamics in Collision-type Orogenic Belts'held the first two day workshop at Stanford University in December, 1994. Petrotectonic settings, mineral paragenesis, geochronoldgy, and geochemical characteristics of UHP rocks from several recognized and suspected UHP terranes were addressed. This special issue presents 11 papers from the more than 50 contributions from the 88 participants representing 15 countries. Many challenging petrotectonic and petrochemical problems remain to be investigated. These include detailed P-T time paths for both the UHP unit and adjacent units, the role of fluids at mantle depths, deep seismic profiles and mechanisms and rate of exhumation of the UHP unit.  相似文献   

7.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   

8.
High-pressure (HP) and ultrahigh-pressure (UHP) eclogites exposed in collisional orogens are widely regarded to record the history of crustal rocks that were subducted to mantle depths and exhumed back to the surface. Insight into subduction and exhumation processes plays an important role in understanding the nature and evolution of subduction zones, geodynamics and plate tectonics. In contrast to continental-type HP to UHP metamorphic rocks that are dominated by felsic lithology, oceanic-type HP to UHP metamorphic rocks are dominated by mafic eclogites and thus have greater density, and their exhumation needs to overcome large barriers and may involve complicated tectonic processes. The exhumation of HP to UHP rocks is mainly influenced by the internal buoyancy, however, the external tectonic forces (such as channel flow) also act as effective exhumation drivers; in addition, effects of tectonic settings (such as slab rollback and breakoff) should take into account. The HP-UHP metamorphic terrane in Southwestern Tianshan, which mainly comprises of metasediments with interlayered metamafic lenses and blocks, represents a typical accretionary mélange associated with deep subduction of oceanic crust. However, the exhumation mechanisms of these once deeply buried HP-UHP rocks are still under discussion. Based on the field occurrences, petrographic features, peak metamorphic P-T conditions and ages of the eclogites/blueschists and their metasedimentary country rocks, a “sediment-type subduction channel” model is advocated in this study to appraise/decipher the formation and evolution of Southwestern Tianshan HP-UHP metamorphic belt. Poly-cyclic metamorphic eclogites record the multistage burial-exhumation cycling manipulated by convective flow in a channel-like interface between the plates, giving robust evidence for the presence of a subduction channel. In addition, this study summarizes some remaining geotectonic problems and research perspectives concerning the Southwestern Tianshan HP-UHP metamorphic belt.  相似文献   

9.
Abstract The chronological characteristics of Alpine metamorphic rocks are described and Alpine metamorphic events are reinterpreted on the basis of chronological data for the western and central Alps from 1960 to 1992. Metamorphic rocks of the Lepontine, Gran San Bernardo, Piemonte, Internal Crystalline Massifs and Sesia-Lanzo mostly date Alpine metamorphic events, but some (along with granitoids and gneisses from the Helvetic and Southern Alps) result from the Variscan, Caledonian or older events and thus predate the Alpine events. Radiometric age data from the Lepontine area show systematic age relations: U-Pb monazite (23-29 Ma), Rb-Sr muscovite (15–40 Ma) and biotite (15–30 Ma), K-Ar biotite (10-30 Ma), muscovite (15–25 Ma) and hornblende (25-35 Ma), and FT zircon (10-20 Ma) and apatite (5-15 Ma), which can be explained by the different closure temperatures of the isotopic systems. A 121 Ma U-Pb zircon age for a coesite-bearing whiteschist (metaquartzite) from the Dora-Maira represents the peak of ultra-high pressure metamorphism. Coesite-free eclogites and blueschists related to ultra-high pressure rocks in the Penninic crystalline massifs yield an 40Ar-39Ar plateau age of about 100 Ma for phengites, interpreted as the cooling age. From about 50 Ma, eclogites and glaucophane schists have also been reported from the Piemonte ophiolites and calcschists, suggesting the existence of a second high P/T metamorphic event. Alpine rocks therefore record three major metamorphic events: (i) ultra-high and related high P/T metamorphism in the early Cretaceous, which is well preserved in continental material such as the Sesia-Lanzo and the Penninic Internal Crystalline Massifs; (ii) a second high P/T metamorphic event in the Eocene, which is recognized in the ophiolites and calcschists of the Mesozoic Tethys; and (iii) medium P/T metamorphism, in which both types of high P/T metamorphic rocks were variably reset by Oligocene thermal events. Due to the mixture of minerals formed in the three metamorphic events, there is a possibility that almost all geochronological data reported from the Alpine metamorphic belt show mixed ages. Early Cretaceous subduction of a Tethyan mid-ocean ridge and Eocene continental collision triggered off the exhumation of the high pressure rocks.  相似文献   

10.
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.  相似文献   

11.
Abstract The Ryoke metamorphic belt in south-west Japan consists mainly of I-type granitoids and associated low-pressure/high-temperature metamorphic rocks. In the Yanai district, it has been divided into three structural units: northern, central and southern units. In this study, we measured the Rb–Sr whole-rock–mineral isochron ages and fission-track ages of the gneissose granodiorite in the central structural unit. Four Rb–Sr ages fall in a range of ca 89–87 Ma. The fission-track ages of zircon and apatite are 68.9 ± 2.6 Ma and 57.4 ± 2.5 Ma (1σ error), respectively. Combining the newly obtained ages with previously reported (Th–)U–Pb ages from the same unit, thermochronologic study revealed two distinctive cooling stages; 1) a rapid cooling (> 40°C/Myr) for a period (~7 Myr) soon after the peak metamorphism (~ 95 Ma) and 2) the subsequent slow cooling stage (~ 5°C/Myr) after ca 88 Ma. The first rapid cooling stage corresponds to thermal relaxation of the intruded granodiorite magma and its associated metamorphic rocks, and to the uplift by a displacement along low-angle faults which initiated soon after the intrusion of the magma. Uplift by the later stage deformation having formed large-scale upright folds resulted in progress of the exhumation during the first stage. The average exhumation velocity of the stage is ≥ 2 mm/yr. During the second stage, the rocks were not accompanied by ductile deformation and were exhumed with the rate of 0.1–0.2 mm/yr. The difference in the exhumation velocity between the first and second cooling stages resulted from the difference in the thickness of the crust and in the activity of ductile deformation between the early and later stages of the orogenesis.  相似文献   

12.
We present new Raman spectra data of carbonaceous material (CM) to extend the range of the Raman spectra of CM thermometer (RSCM) to temperatures as low as 100 °C. Previous work has demonstrated that Raman spectroscopy is an excellent tool to describe the degree of graphitization of CM, a process that is independent of pressure but strongly dependent on metamorphic temperature. A linear relationship between temperature and the Raman parameter R2 (derived from the area of the defect band relative to the ordered graphite band) forms the basis of a previous thermometer. Because R2 shows little variability in low-temperature samples, 330 °C serves as a lower limit on the existing thermometer. Herein, we present Raman spectra from a suite of low-temperature (100 to 300 °C) samples from the Olympics Mountains and describe other aspects of the Raman spectra of CM that vary over this range. In particular, the Raman parameter R1 (the ratio of heights of the disordered peak to ordered peak) varies regularly between 100 and 350 °C. These data, together with published results from higher-temperature rocks, are used to calibrate a modified RSCM thermometer, applicable from 100 to 700 °C. Application to low-grade metasediments in the Otago region in the South Island of New Zealand gives temperatures consistent with previous estimates, demonstrating the reliability of the modified RSCM thermometer.We apply the modified RSCM thermometer to 53 samples from Crete to evaluate the role of the Cretan detachment fault in exhuming Miocene high pressure/low-temperature metamorphic rocks exposed there. The metamorphic rocks below the detachment (the Plattenkalk and Phyllite-Quartzite units) give metamorphic temperatures that range from 250 to 400 °C, consistent with previous petrologic estimates. We also demonstrate that the Tripolitza unit, which lies directly above the detachment, gives an average metamorphic temperature of about 260 °C. The modest break in metamorphic temperature in central Crete indicates that the Cretan detachment accounts for only 5 to 7 km of exhumation of the underlying HP-LT metamorphic rocks, which were initially accreted at ∼ 35 km. We argue that the bulk of the exhumation (∼ 28 km out of 35 km total) occurred by pervasive brittle stretching and erosion of structural units above the detachment.  相似文献   

13.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

14.
W. G. Ernst 《Island Arc》1999,8(2):125-153
The Dabie-Sulu belt of east-central China, the Kokchetav Complex of northern Kazakhstan, the Maksyutov Complex of the South Urals, the Dora Maira Massif of the Western Alps, and the Western Gneiss Region of southwestern Norway lie astride intracontinental suture zones. All represent collisional mountain belts. Adjoining Eurasian regions exhibit little or no evidence of a coeval calc-alkaline arc. Each metamorphic complex contains mineralogic and textural relics of the presence or former existence of coesite ± diamond. Other ultrahigh-P, moderate-T metamorphic phases, including K-rich clinopyroxene, Mg-rich garnet, ellenbergerite, lawsonite, Al-rutile, glaucophane, high-Si phengite, and associations such as coesite + dolomite, magnesite + diopside, and talc + kyanite, diopside, jadeite, or phengite also testify to pressures approaching or exceeding 2.8 GPa. Each of the five well-studied Eurasian ultrahigh-pressure complexes consists chiefly of old, cool continental crust. Deep-seated recrystallization took place during the Phanerozoic. Subduction zones constitute the only known plate-tectonic environment where such high-P, low-T conditions exist. A model involving underflow of a salient of continental crust imbedded in oceanic crust-capped lithosphere explains the ultrahigh- pressure metamorphism. Partly exhumed ultrahigh-pressure terranes consist of relatively thin sheets 7 ± 5 km thick. During early stages of plate descent, hydration of relatively anhydrous units occurs, and volatiles are expelled from hydrous rocks. If present, aqueous fluids markedly catalyze reactions. Experimental studies on MORB bulk compositions demonstrate that, for common subduction-zone P–T trajectories, amphibole (the major hydrous phase in metabasaltic rocks) dehydrates at less than ~ 2.0 GPa; accordingly, mafic blueschists and amphibolites expel H2O at great depth and, except for some coarse-grained, dry metagabbros, tend to recrystallize to eclogite. Serpentinized mantle beneath the oceanic crust devolatilizes at comparable pressures. In contrast, phengite and biotite remain stable to pressures exceeding 3.5 GPa in associated quartzofeldspathic rocks. So, under ultrahigh-pressure conditions, the micaceous lithologies that dominate the continental crust fail to evolve significant H2O, and may transform incompletely to eclogitic assemblages. Although hydrous rocks expel volatiles during compaction and shallow burial, very deep underflow of partly hydrated oceanic crust + mantle generates most of the volatile flux along and above a subduction zone prior to continental collision. As large masses of sialic crust enter the convergent plate junction, fluid evolution at deep levels severely diminishes, and both convergence and dehydration terminate. After cessation of ultrahigh-pressure recrystallization, tectonic slices of sialic massifs return to shallow depths along the subduction channel, propelled by buoyancy; collisional sheets that retain ultrahigh-pressure effects lose heat efficiently across both upper (extensional, normal fault) and lower (subduction, reverse fault) tectonic contacts. These sheets ascend to midcrustal levels rapidly at average exhumation rates of 2–12 mm/year. Surviving ultrahigh-pressure relics occur as micro-inclusions encased in dense, strong, impermeable, unreactive mineralogic hosts, and are shielded during return towards conditions characteristic of midcrustal levels. Rehydration attending decompression is incomplete; its limited extent reflects the coarse grain size and relative impermeability of the rocks undergoing retrogression, as well as declining temperature and lack of aqueous fluids.  相似文献   

15.
Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt,Xinjiang,northwest China.After detailed petrological study,three samples including one fresh eclogite TK003,one blueschist sample TK026-8 and one retrograded eclogite TK027,were selected for phase equilibrium modeling under NC(K)MnFMASHO(N2O-CaO-K2O-MnO-FeO-MgO-Al2O3-SiO2-H2O-O)system,by thermocalc 3.33 software.Composition analyses of garnets in these three samples show typical growth zoning with Xpy and Xgrs increasing,Xspss decreasing from core to rim.Pseudosection modeling of the garnet zonation reflects that the eclogites and blueschist experienced a similar P-T evolution trajectory,with a near iso-baric heating in the early stage,and reached eclogite facies metamorphic field with peak P-T regime of 480–515°C,2.00–2.30 GPa.Subsequently the rocks experienced an early iso-thermal decompression retrograde stage with P-T conditions of 515–519°C,1.78–1.93 GPa.Variations of mineralogy and modes of these rocks are probably due to different retrograde paths as a consequence of different bulk-rock composition,as well as a variation in fluid activity during exhumation.P-T calculation and a peak geothermal gradient of 6–7°C/km indicate HP rocks in the Kekesu Valley experienced cold subducted eclogite facies metamorphism.Thus a huge oceanic subduction eclogite facies metamorphic belt in southwest Tianshan has been recognized,extending from the Kekesu Valley in the east to the Muzhaerte Valley in the west for nearly200 km.However,UHP evidence has not been found in the Kekesu terrane,perhaps because the slab in east part of southwest Tianshan did not subduct into such a great depth.  相似文献   

16.
The presence of relics of high-pressure and ultra-high pressure metamorphic assemblages in metasedi-ments and granitoid gneisses provides important evi-dence for deep subduction of continental crust (litho-sphere), and also an important criteria on "in situmetamorphism" and "tectonic emplacement" relation-ship between gneisses and enclosed eclogites. In re-cent years, eclogite and garnet peridotite lenses en-closed within quartz-feldspathic gneisses or peliticgneisses were discovered separately…  相似文献   

17.
U–Pb geochronological, trace-element and Lu–Hf isotopic studies have been made on zircons from ultrahigh-pressure (UHP) mafic eclogite from the Kumdy-Kol area, one of the diamond-facies domains of the Kokchetav Massif (northern Kazakhstan). The peak eclogitic assemblage equilibrated at > 900 °C, whereas the bulk sample composition displays light rare-earth element (LREE) and Th depletion evident of partial melting. Zircons from the eclogite are represented by exclusively newly formed metamorphic grains and have U–Pb age spread over 533–459 Ma, thus ranging from the time of peak subduction burial to that of the late post-orogenic collapse. The major zircon group with concordant age estimates have a concordia age of 508.1 ±4.4 Ma, which corresponds to exhumation of the eclogite-bearing UHP crustal slice to granulite- or amphibolite-facies depths. This may indicate potentially incoherent exhumation of different crustal blocks within a single Kumdy-Kol UHP domain. Model Hf isotopic characteristics of zircons (εHf(t) +1.5 to +7.8, Neoproterozoic model Hf ages of 1.02–0.79 Ga) closely resemble the whole-rock values of the Kumdy-Kol eclogites and likely reflect in situ derivation of HFSE source for newly formed grains. The ages coupled with geochemical systematics of zircons confirm that predominantly late zircon growth occurred in Th–LREE-depleted eclogitic assemblage, that experienced incipient melting and monazite dissolution in melt at granulite-facies depths, followed by amphibolite-facies rehydration during late-stage exhumation-related retrogression.  相似文献   

18.
The present paper examines a kinetic model of the coesite–quartz transition under an elastic field. This model is applied to discuss the possible exhumation path of ultrahigh-pressure (UHP) metamorphic rocks. By incorporating the model of transition kinetics into a three-shelled composite sphere model in linear elasticity, the internal stresses in coesite, quartz, and garnet shells were calculated for given external pressure ( P )–temperature ( T ) paths. The occurrence of rupture provides a constraint on the temperature and the amount of quartz inverted from coesite at the rupture for each P–T path. Comparison of calculated results and the natural occurrence of coesite inclusion from the Dora Maira Massif, containing ∼ 27% quartz at the rupture, enables us to constrain the possible exhumation path and possible transition kinetics. A steep decompression path with slow transition kinetics is most favorable, which is consistent with the estimated P–T path during exhumation for most UHP metamorphic rocks.  相似文献   

19.
The Dabie Complex can be divided into two metamorphic facies belts, granulite facies and amphibolite facies. Growth zoning in the inner segments of garnets is well preserved in the granulite belt. By contrast, garnets in the amphibolite belt have no composition variations in the inner segments, but show growth zoning in the outer segments. This may imply different incipient metamorphic history for the two metamorphic belts. However, both reaction textures and composition trends that reflect the decompression process are commonly in both of the two belts. Pressure decreased about 0.70 and 0. 85 GPa for the granulite and the amphibolite belts, respectively, estimated from mineral thermobarometers. The metamorphicP-T paths are characteristic of collision and subduction, implying that the Dabie Complex underwent rapid subsidence and rapid tectonic uplift. Uplift of the ultrahigh pressure eclogites in the region could also be related to the process.  相似文献   

20.
Eclogite is essentially a bi-mineralogic high-grade metamorphic rock consisting of garnet and omphacite and is the product of high-to-ultrahigh pressure metamorphism of basaltic rocks due to the subduction of oceanic crust or the thickening/subduction of …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号