首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation of 222Rn, its short-lived daughters and 212Pb concentrations in the atmosphere, and conditions of the lower atmosphere were observed simultaneously at Kamisaibara Village in Japan. The variation of 222Rn concentration and the ratio of the concentrations of 212Pb and the short-lived daughters of 222Rn during nighttime is explained by sodar echoes and temperature profiles obtained by an instrumented tethered balloon. Depths of the convective mixing layer estimated using the 222Rn concentration, using the surface sensible heat flux, and obtained by low-level sondes are compared and found to be in approximate agreement.  相似文献   

2.
Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.  相似文献   

3.
The aim of the 222Rn measurements during the airborne campaign TROPOZ II, was first to help in the interpretation of the photochemical studies, and secondly to furnish a data set of 222Rn in the troposphere, for validation of atmospheric transport models. In this paper we present the 222Rn measurements, and their simulation with a 3-D atmospheric transport model based on observed winds. The 222Rn was measured using the active daughters deposit technique with isokinetic aerosol sampling. We have obtained 44 measurements distributed between 65° North and 55° South, from 1 to 11 km height. In 25% of cases, we found relatively high concentrations (> 300 mBq·scm) of 222Rn in the high troposphere (>8 km). The results of 3D simulations and the calculations of back-trajectories allow us to find the origins of the high 222Rn concentrations. The transport model reproduced most of the observed synoptic variations, but it overestimates the concentrations which implies a vertical transport of excessive velocity.  相似文献   

4.
The atmospheric concentration of 210Pb was determined for two years at six stations in the western North Pacific region. The following results were obtained and discussed by comparing them with those of Al. The atmospheric concentration of 210Pb varied widely from week to week, but the degree of variation was about a half that of Al. Contrary to Al, the year-to-year variation of 210Pb was not pronounced and its seasonal variation was well expressed by a sine curve. The 210Pb concentration did not show a marked latitudinal variation and its base-line concentration was high in the surface air over the North Pacific. These suggest that atmospheric 210Pb has a longer residence time, due to its transportation through higher altitudes and deposits much more evenly onto the Earth's surface and the ocean, as compared with Al in mineral dust which is larger in size in the source region.  相似文献   

5.
Concentrations of 222Rn at 0.1 m and 6.5 m height above ground level and 222Rn flux density were measured during nights characterized by strong cooling, light winds and clear sky conditions in the Carpathian Basin in Hungary. A very stable boundary layer (vSBL) formed on 14 nights between 15 August and 3 September 2009. On 12 nights, an estimated 72% (s.d. 20%) of 222Rn emitted from the surface since sunset was retained within the lowest 6.5 m above the ground until sunrise the following morning. On two nights an intermittent increase in wind speed at 9.4 m height was followed by a rise in temperature at 2.0 m height, indicating a larger atmospheric motion that resulted in 222Rn at 0.1 m around sunrise being the same as around the preceding sunset. It does not seem to be rare in a large continental basin for a vSBL to be nearly completely decoupled from the atmosphere above for the entire period from sunset to sunrise.  相似文献   

6.
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%.  相似文献   

7.
Beryllium-7(~7Be)and lead-210(~(210)pb)activities were measured from October 2002 to January 2004 at Waliguan Observatory(WO:36.287°N,100.898°E,3816 m a.s.l(above sea level)in northwest China.~7Be and ~(210)Pb activities are high with overall averages of 14.7±3.5 mBq m~(3)and 1.8±0.8 mBq m~(-3)respectively. For both ~7Be and ~(210)Pb,there are significant short-term and seasonal variations with a commonly low value in summer(May September)and a monthly maximum in april(for ~7Be)and in December(for~(210)Pb). The ratio of ~7Be/~(210)pb showed a broad maximum extending from April to July,coinciding with a seasonal peak in surface ozone(O_3).The seasonal cycles of ~7Be and ~(210)Pb activities were greatly influenced by precipitation and thermal dynamical conditions over the boundary layer,especially for ~(210)Pb.The vertical mixing process between the boundary layer and the aloft air modulates the variations of ~7Be and ~(210)pb at WO in summer.It is indicated that air mass had longer residence time and originated from higher altitudes at WO in the spring-summer time and the winter in 2003.During an event with extremely high weekly- averaged ~7Be concentration(24.8 mBq m~(-3))together with high O_3 levels and low water mixing ratio,we found that air masses had been convectively transported a long distance to WO from high latitude source regions in central Asia,where significant subsiding motions were observed.In another case with the extreme ~(210)pb activity of 5.7 mBq m~(-3)high CO_2 level and specific humidity(in winter),air masses had come from south China and north Indian regions where ~(222)Rn activities were high.This study,using ~7Be and ~(210)Pb as atmospheric tracers,has revealed that complex interactions of convective mixing from the upper troposphere and long-range transports exist at WO.  相似文献   

8.
The Petryanov air filters combined into half-year sets were analyzed for the presence of 40K, 137Cs and 22Na by means of low-background gamma rays spectrometry. Each sample contains aerosols from more than 1 Mm3 of air. Samples were collected in ground level air at Kraków (Southern Poland) from 1996 to 2002. Activity concentrations of 40K are almost constant with the mean of 14.7± 4.5 Bq m–3. Activity concentrations of 137Cs, which are on the level of single Bq m– 3 show exponential decrease with effective half-life time of 7.07± 0.77 years. The cosmogenic 22Na shows a strong seasonal variation with significant different mean values activity concentration between 0.333± 0.095 Bq m–3 and 0.137± 0.045 Bq m–3, for summer and winter, respectively. Moreover, the activity ratio for two cosmogenic radionuclides: 22Na and measured previously 7Be show also changes with statistically significant seasonal differences. The lower values were found during winters. The mechanisms which might govern this ratio are discussed. The conclusion is that transport of 22Na during summer seems to be so much effective, that results in kind of relative depletion of stratosphere of this nuclide.  相似文献   

9.
Using the chemical composition of snow and ice of a central Greenland ice core, we have investigated changes in atmospheric HNO3 chemistry following the large volcanic eruptions of Laki (1783), Tambora (1815) and Katmai (1912). The concentration of several cations and anions, including SO 4 2– and NO 3 , were measured using ion chromatography. We found that following those eruptions, the ratio of the concentration of NO 3 deposited during winter to that deposited during summer was significantly higher than during nonvolcanic periods. Although we cannot rule out that this pattern originates from snow pack effects, we propose that increased concentrations of volcanic H2SO4 particles in the stratosphere may have favored condensation and removal of HNO3 from the stratosphere during Arctic winter. In addition, this pattern might have been enhanced by slower formation of HNO3 during summer, caused by direct consumption of OH through oxidation of volcanic SO2.  相似文献   

10.
The atmospheric distribution of222Rn over the north Pacific is simulated with a three-dimensional chemical tracer model using meteorological input from the NASA-GISS general circulation model (4°×5° resolution). Radon-222 (half-life 3.8 days) is a tracer of continental air. Model results are in good agreement with measurements from ships and aircraft. Strong Asian influence is found throughout the tropospheric column over the north Pacific in spring, reflecting a combination of frequent convection over the continent, strong westerly winds at altitude, and subsidence over the ocean. In summer, the upper troposphere over the north Pacific is heavily affected by deep convection over China; however, Asian influences at the surface are then at their yearly minimum. In winter, strong Asian influence is found near the surface but not at high altitudes. Transport of American air over the Pacific is important only at low latitudes. American sources account for 11% of total222Rn in the model at Midway, 30% at Mauna Loa and 59% at Oahu. Results for Hawaii indicate two seasonal peaks of American influence, one in summer and one in winter. The tropical western Pacific is particularly remote from continental influences year round.  相似文献   

11.
Dimethylsulfide (DMS) in surface seawater and the air, methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2–) in aerosol, and radon-222 (Rn-222) were measured in the northern North Pacific, including the Bering Sea, during summer (13 July – 6 September 1997). The mean atmospheric DMS concentrations in the eastern region (21.0 ± 5.8 nmole/m3 (mean ± S.D.), n=30) and Bering Sea (19.9 ± 9.8 nmole/m3, n=10) were higher than that in the western region (11.1 ± 6.4 nmole/m3, n=31) (p<0.05), although these regions did not significantly differ in the mean DMS concentration in surface seawater. Mean sea-to-air DMS flux in the eastern region (21.0 ± 10.4 mole/m2/day, n=19) was larger than those in the western region (11.3 ± 16.9 mole /m2/day, n=22) and Bering Sea (11.2 ± 7.8 mole/m2/day, n=7) (p<0.05). This suggests that the longitudinal difference in atmospheric DMS was produced by that in DMS flux owing to wind speed, while the possible causes of the higher DMS concentrations in the Bering Sea include (1) later DMS oxidation rates, (2) lower heights of the marine boundary layer, and (3) more inactive convection. The mean MSA concentrations in the eastern region (1.18 ± 0.84 nmole/m3, n=35) and Bering Sea (1.17 ± 0.87 nmole/m3, n=13) were higher than that in the western region (0.49 ± 0.25 nmole/m3, n=28) (p < 0.05). Thus the distribution of MSA was similar to that of DMS, while the nss-SO4 2– concentrations were higher near the continent. This suggests that nss-SO4 2– concentrations were regionally influenced by anthropogenic sulfur input, because the distribution of nss-SO4 2– was similar to that of Rn-222 used as a tracer of continental air masses.  相似文献   

12.
The reaction kinetics of S(IV) autoxidation catalyzed by Mn(II) in the pH range 3–5 typical for atmospheric liquid water, was investigated. For reactions with pH maintained constant during the reaction course, the predictions obtained by a simple integral approach cover kinetic results only for concentrations of HSO 3 up to 0.2 mM at pH 4.5. Thus, a generalized simple kinetic model, which can be used for predicting the reaction kinetics in wider concentration, pH and temperature ranges, was derived. This model is based on the assumption that the reaction rate is proportional to the concentration of a transient manganese-sulfito complex formed in the initial step of a radical chain mechanism. In the proposed power law rate equation
the concentration of complex is calculated from the stability constant K and concentrations of reactants at a specific reaction time. This rate equation adequately predicts the reaction kinetics in the pH range 3–5, in the concentration ranges 0.1 ≤ [HSO 3 ] ≤ 0.4 mM and 2 ≤ [Mn(II)] ≤ 14.6 μM. For the temperature range 15–35 °C, the estimated value for activation energy is 92.0 ± 0.1 kJ mol−1 and the Gibbs free energy of formation of the manganese-sulfito complex is −20.4 ± 0.3 kJ mol−1. Furthermore, the kinetics for catalytic reactions with pH maintained constant during the reaction course as well as with initial pH adjusted only at the start of the reaction, is described satisfactorily by the present model.  相似文献   

13.
For a ground-level continuous release of a trace substance like 222Rn, for which the vertical profile of concentrations is exponential, a quantity, equivalent mixing height h, is defined in this paper in the following way. If the substance were to be redistributed uniformly through a layer such that the concentration were to be equal to that at the surface, then the top of the layer would be h.Relative values of h can be obtained from surface measurements of Radon concentrations, but absolute values require estimates of the vertical fluxes of Radon. A comparison is given of the estimates of h obtained from surface measurements with estimates derived from the vertical profile of Radon from the surface to 100 m.Practical methods are proposed for estimating the surface flux of Rn.  相似文献   

14.
Résumé Le radon (Rn86 222) et les descendants du thoron (ThB ou Pb82 212) sont utilisés comme traceurs pour l'étude des échanges verticaux de matière. Diverses méthodes permettant le calcul des coefficients de diffusion sont présentées soit dans l'hypothèse simplificatrice du régime stationnaire, soit dans le cas plus général du régime dépendant du temps. L'application de ces méthodes au calcul des coefficients de diffusion sur des données fournies à partir d'un modèle de simulation numérique permet de préciser le degré d'approximation représenté par les diverses hypothèses simplificatrices. Les méthodes de calcul présentées sont appliquées aux mesures expérimentales du radon et du ThB. Ces mesures ont été réalisées de manière continue durant deux ans en trois points de mesures, entre 0 et 100 m de hauteur. Une statistique est présentée sur la variation diurne des échanges et la variation saisonnière de cette variation diurne, ainsi qu'un exemple particulier du traitement des données en régime dépendant du temps.
Continuous measurements of the concentrations of radon and thorium B have been carried out at 3 levels (1.5, 30 and 100 m) during a period of 2 yr (from October 1966 to October 1968) at the site of the future airport of Paris, at Roissy-en-France; at the same time, standard meteorological elements have been measured at the station by the Météorologie Nationale and the vertical gradients (wind and temperature profiles in the first 100 m) by J. Saissac. The work has been undertaken in order to determine the vertical exchange of matter near the ground.The computation of the exchange coefficients has been carried out by using the standard diffusion equation (K theory). The results in the literature as well as statistical analysis of our data lead us to believe that the flux of Rn and ThB at the ground can be considered as horizontally homogeneous in the neighbourhood of the measurement site (the soil is geologically homogeneous over a large area). The differential equation is thus simplified, containing only one space parameter (z), and timet.In this paper we describe the principal computation methods used for determining the exchange coefficients from the measurement of the vertical gradients of tracers. In order to illustrate the approximation errors and fields of applicability of different methods, we have applied them to the data provided from a numerical integration of the diffusion equation, in which one can introduce any profile of diffusivity.We show that during stable periods, the value of the flux of Rn or ThB can be determined forz = 0.Generally, during daylight hours when the motion near the ground is strongly turbulent, the vertical gradient of concentration is not measurable with sufficient accuracy.The daytime diffusion coefficient is therefore not computed by the general methods presented above. This deficiency can be overcome by assuming that the ratio between the mean concentration observed during these periods and the value of the flux at ground level are characteristic of the whole mixing layer. The values of the exchange coefficients obtained by this method are included and range from 5 to 30 m2s-1.The application of the proposed methods to the experimental results has been made for two atmospheric states. Firstly, we have used a simplified method (stationary state) which is applied to the whole experimental data set. We present the diurnal variation, the most probable value of the diffusion coefficients and the seasonal evolution. The values obtained from Rn and ThB measurements have been compared.
  相似文献   

15.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   

16.
Precipitation samples were collected by filtrating bulk sampler in Kitakyushu City, Japan, from January 1988 to December 1990. Volume weighted annual mean of pH was 4.93, but the pH distribution indicated that most probable value lay in the range pH 6.0–6.4. Volume weighted annual mean concentrations of major ionic components were as follows; SO 4 2– : 84.2, NO 3 : 28.1, Cl: 86.3, NH 4 + : 45.5, Ca2+: 63.3, Mg2+: 27.0, K+: 3.4, Na+: 69.0 µ eq l–1. The highest concentrations of these ionic components were observed in winter and the lowest occurred in the rainy season. The ratio of ex-SO 4 2– /NO 3 exhibited the lowest ratio in summer, and the highest ratio in winter. Good correlations were obtained between Cl and Na+, ex-SO 4 2+ and ex-Ca2+, NO 3 and ex-Ca2+, and NH 4 + and ex-SO 4 2– , respectively. However, no correlation between Cl and Na+ with Ca2+ was observed. The relationship of H+ with (ex-SO 4 2– + NO 3 ) - (ex-Ca2+ + NH 4 + ) indicated positive correlation.  相似文献   

17.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

18.
基于典型城市站太原站2018年3月—2019年2月的大气CO2在线观测资料,利用筛分法(Meteorological filtering method, MET)和黑碳示踪法(Black Carbon tracer, BC)进行本底/非本底的筛分,得到了本底浓度的变化特征。结果表明,太原大气CO2浓度季均值冬季最高,夏季最低;不同季节呈“单峰型”日变化特征,日振幅均在26.0×10-6以上;4个季节CO2浓度与地面风速存在显著负相关关系;CO2浓度抬升区域主要受当地工业布局的影响,最大抬升幅度在秋季达17.4×10-6;使用气象筛分法(MET)得到年均本底浓度为(431.4±19.9)×10-6,人为排放等对其影响为23.5×10-6,年振幅比同纬度其它本底站大,为34.5×10-6;黑碳示踪法(BC)得到冬季季均本底浓度为(445.0±22.9)×10-6,比MET筛...  相似文献   

19.
10Be is used as a spike of the natural background atmospheric aerosol to calculate the global flux of sulfur (FS) into the free troposphere. The sulfate and10Be concentrations determined in polar snow are compared. On the basis of an annual10Be production rate of 1.21 106 at.cm-2, a very low figure of 2.9 Tg S a-1 is calculated for FS, which suggests that most of the sulfur emitted at ground level remains in the boundary layer. The role of OCS in the upper tropospheric sulfur budget is reviewed. It is also shown that cataclysmic volcanic eruptions may disturb considerably for 1–2 years this vast background tropospheric sulfur reservoir.  相似文献   

20.
Atmospheric mixing ratios of methyl iodide (CH3I) and other methyl halides have been measured at Cape Grim, Tasmania (41°S, 145°E), since early 1998 as part of the Advanced Global Atmospheric Gases Experiment (AGAGE). This paper analyses about 1700 ambient air CH3I measurements from the 14-month period (March 1998–April 1999). Mixing ratios peaked during the summer, despite faster photolytic loss, suggesting local oceanic emissions were about 2.2–3.6 times stronger in summer than in winter. Back trajectories show that CH3I levels are strongly dependent on air mass origin, with highest mixing ratios in air from the Tasman Sea/Bass Strait region and lowest levels in air originating from the Southern Ocean at higher latitudes. CH3I mixing ratios were not well correlated with other methyl halides in unpolluted marine air. The large variations with season and air mass origin suggest that high frequency, continuous data from key locations will make a significant contribution to the understanding of sources and sinks of this important short-lived atmospheric species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号