首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the area of binary stars the important contribution of GAIA will be towards statistical studies of the binary star distribution functions. On the other hand, from the GAIA observations, more than 10 000 masses accurate to 1% can be expected. This improves accuracy of the stellar initial mass function (IMF) still poorly known, particularly for the low-mass stars. A goal of the present study is to simulate a solar vicinity model with 100% binaries for predicting observational distributions. Under the assumption that star formation rate is constant, a random pairing of objects drawn from a pre-assumed single star power-law IMF is generated. Stellar evolution and selection effects are taken into account. Orbital parameters are assumed to be spread according to the common distributions. It is shown that under given assumptions the power-law IMF does lead to quasi-lognormal turnovers for the resulting observational mass function. The described model can be used to estimate, under reasonable assumptions on the IMF shape, the number of binaries of the different types that can be observed with GAIA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Planets which are old and close to their parent stars are considered as reflecting planets because their intrinsic temperature is extremely low but they are heated strongly by the impinging stellar radiation and hence radiation of such planets are the reflected star light that is governed by the stellar radiation, orbital distance and albedo of the planet. These planets cannot be resolved from the host stars. The second kind of exoplanets are those which are very young and hence they have high intrinsic temperature. They are far away from their star and so they can be resolved by blocking the star-light. It is now realized that radiation of such planets are linearly polarized due to atmospheric scattering and polarization can determine various physical properties including the mass of such directly detected self-luminous exoplanets. It is suggested that a spectropolarimeter of even low spectral resolution and with a capacity to record linear polarization of 0.5–1% at the thirty-meter telescope would immensely help in understanding the atmosphere, especially the cloud chemistry of the self-luminous and resolvable exoplanets.  相似文献   

3.
Direct observation of exoplanets will make it possible to clarify many principal questions connected both with extrasolar planets and planetary systems and to measure atmospheric spectra of the planets. Obtaining an exoplanet image not distorted by the light from a star is at the cutting edge of present-day optical technologies owing to the combination of tremendous brightness contrasts and small angular distances between the planet and star. To observe the exo-Earth, it is necessary to weaken the brightness of the parent star image by 9–10 orders of magnitude (in the optical and near-IR ranges). To compensate the influence of the atmosphere, ground-based (e.g., 8–10 m) telescopes intended for observing exoplanets are equipped with adaptive optics systems, the spatial and temporal resolutions of which are not yet sufficient. A meter-class space telescope equipped with a star coronagraph will make it possible to observe the nearest exoplanets. In this paper, an improved tool for star coronagraphy is considered, namely, the achromatic interferometric coronagraph with a variable rotational shear. It is fabricated according to the optical scheme of the common path interferometer for studying extrasolar planets by direct observations. Theoretical and experimental estimations for the main characteristics of the scheme were carried out. Laboratory experimental measurements were carried out on a coronagraph model.  相似文献   

4.
We discuss a possible use of the asymptotic giant branch (AGB) stars for tracing star formation histories on the Galactic and extragalactic distance scales with the ESA's astrometric space mission GAIA. Extensive numerical simulations demonstrate that metallicities (Δ [M/H] ≲ 0.3) can be obtained for the AGB stars with GAIA up to the distances of ∼ 200 kpc, if no interstellar extinction is present. Reliable population ages can be also obtained from the AGB stars if their T eff are constrained precisely. We show that precise effective temperatures can be obtained by fitting observed spectral energy distributions of the AGB stars with theoretical fluxes calculated from the synthetic spectra. A combination of the derived effective temperatures with the bolometric luminosities allows to derive precise population ages for a wide range of ages and metallicities over the large distance scales. This demonstrates that AGB stars can be employed very effectively for tracing star formation histories with GAIA, allowing to refine the global evolutionary scenarios of stellar populations in the Milky Way and the galaxies beyond. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The discovery in 1995 of the first extrasolar giant planet 51 Peg b initiated the physics of extrasolar planetary systems. By May 2004, the total number of the detected planets orbiting other stars was 122, including 24 hot jupiters, which have a semimajor axis of the orbit of less than 0.15 AU. Due to the high activity of researchers who work with the radial-velocity method, the probable candidates, say, in the 75-parsec radius, are quickly exhausted. The OGLE-type objects, even if their number increases, may only slightly contribute to the physics of extrasolar planets (or exoplanets), because even to determine the type of the companion (a giant planet, brown dwarf, or star of small mass) is extremely problematic for such weak objects. A search for Earth-like planets is still far beyond the technical capabilities: the Keplerian velocity of the Sun induced by the Earth is only 0.09 m/s, which requires to improve the results obtained by a factor of 20–30. Particularly important results were obtained in the observations of transits of the object HD 209458b, which became the only object of this type namely due to transits. The hope of finding another short-period object with similar transits is becoming less and less. The important role of the star metallicity in the formation of planetary systems predicted during the first years after the discovery of exoplanets has gained recognition and been developed successfully. Metallicity has become an indicator of the possible presence of planetary systems and, probably, even determines the type of planets. This review also considers the statistical data on the orbital and mass characteristics of exoplanets.  相似文献   

6.
For detecting exoplanets with high precision,using the angular distance between the two stars to detect the periodic motion of the star will be a better choice....  相似文献   

7.
The detection and investigation of EUV heated, extended and non-hydrostatic upper atmospheres around terrestrial exoplanets would provide important insights into the interaction of the host stars plasma environment as well as the evolution of Earth-type planets their atmospheres and possible magnetic environments. We discuss different scenarios where one can expect that Earth-like planets should experience non-hydrostatic upper atmosphere conditions so that dynamically outward flowing neutral atoms can interact with the stellar plasma flow so that huge hydrogen coronae and energetic neutral atoms (ENA) can be produced via charge exchange. By observing the size of the extended upper atmospheres and related ENA-clouds and by determining the velocities of the surrounding hydrogen atoms, conclusions can be drawn in respect to the origin of these features. Due to the large number of M-type stars in our neighbourhood and their long periods of strong and moderate stellar activity in comparison to G-stars, we expect that M-type stars represent the most promising candidates for the detection of hydrogen ENA-clouds and the subsequent study of the interaction between the host star and the planets?? upper atmosphere. We show that the low mass of M-type stars also makes them preferable targets to observe extended hydrogen clouds around terrestrial exoplanets with a mass as low as one Earth mass. Transit follow-up observations in the UV-range of terrestrial exoplanets around M-type stars with space observatories such as the World Space Observatory-UV (WSO-UV) would provide a unique opportunity to shed more light on the early evolution of Earth-like planets, including those of our own Solar System.  相似文献   

8.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   

9.
The goal of this work is to assess the expected scientific output from the photometric studies of globular clusters in the Large Magellanic Cloud with ESA's astrometric space mission GAIA. For this purpose we simulate GAIA photometry of individual stars in synthetic cluster populations, covering a large range of cluster ages and metallicities. We find that accurate effective temperatures (Δ T eff<10%) can be obtained from GAIA photometry down to V ∼ 18 for stars in populations within the studied metallicity range ([M/H] = -0.4 ... -1.7). GAIA will also provide photometric metallicities (Δ [M/H] ≲ 0.3 dex) for the cluster giants brighter than V ∼ 17.5. The knowledge of the effective temperature sand metallicities will allow to obtain accurate ages of stellar populations younger than about 1 Gyr using the usual procedure of main sequence turn-off point fitting. Ages of older stellar populations (≳ 1 Gyr) may be constrained from the isochrone fits to the giant branches in the observed CMDs. We conclude that GAIA will provide excellent opportunities for studying star formation histories far beyond the Milky Way, providing means for better understanding of stellar and galactic evolution in different astrophysical environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We present the results of spectroscopic confirmation of exoplanet candidates from the “Kepler” space mission catalog. We used the NES spectrometer of the 6-m Russian BTA telescope to investigate the Doppler variability of the radial velocities of the host stars of KOI-974.01, KOI-2687.01/02, and KOI-2706.01. According to the derived upper limits, KOI-2706.01 has a mass significantly smaller than 12 Jupiter masses, which directly indicates its planetary nature. We show that KOI-2687.01 and KOI-2687.02, which have Earth-size or white dwarf-size radii according to photometric data, cannot be white dwarfs, and are therefore exoplanets. Radial velocity analysis for KOI-974, an F-type star, has shown noticeable variations with a half-amplitude of 400 ms?1, which correlate poorly with the phase of its orbital rotation. This can indicate a presence of other massive planets in the system, with orbits closer or farther from the host star than the orbit of KOI-974.01, or a low mass star in a distant outer orbit. Using the method of synthetic spectra, we obtained more accurate atmospheric parameter and radius estimates for all the program host stars, which, in turn, allowed us to refine the radii of the studied exoplanet candidates.  相似文献   

11.
By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, \(\hbox {Sun}^{\prime }\)s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (\(\ge \)1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of \({\sim }\)0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.  相似文献   

12.
We report the discovery of a 7.3 M J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118−0262485 with a period of 2.243 752 d and orbital eccentricity   e = 0.09  . A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 ± 0.5 M J and a radius of 1.28 ± 0.08 R J. This leads to a mean density of about 4.6 g cm−3 making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of  160 ± 20  pc. Spectral analysis of the host star reveals a temperature of  6475 ± 100 K, log  g = 4.07  cm s−2 and   v sin  i = 4.9 ± 1.0  km s−1, and also a high lithium abundance,  log  N (Li) = 2.84 ± 0.05  . The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5–1.0 Gyr.  相似文献   

13.
Atmospheric escape is an important sector in the evolution of planetary atmosphere, and its energy is mainly originated from the radiation of the host star at the high energy band. The radiation flux drops dramatically with the increase of orbital distance, there is a large difference of planetary atmospheric escape in different orbits, so it is necessary to study the impact of orbital distance on the atmospheric escape of an exoplanet. We consider the radiation transfer and the photochemical reactions of multiple kinds of particles to study the variation of planetary atmospheric escape with the orbital distance by using a 1-D hydrodynamic model. Due to the large differences of the spectra of host stars in different evolution stages, the Astrophysical Plasma Emission Code (APEC) in the X-Ray Spectral Fitting Package (XSPEC) is used to obtain the spectra of solar-type stars with different ages as the input spectra of the model. The results indicate that the escape rates of the exoplanets in different orbits are different significantly, and the escape mechanism is converted from the drastic hydrodynamic escape into the moderate Jeans escape as the orbital distance increases, the smaller the planetary gravitational potential, the younger the star-planet system, the larger the distance of this conversion. The correlation between the escape rate and the radiation flux decreases for the short-period exoplanets in a younger star-planet system. It is shown that the classical energy-limited escape theory is not suitable for this kind of exoplanets. These results have enriched the studies on the atmospheric escape of exoplanets, especially, extended the studies on the escape mechanism and energy conversion under different orbital distances and stellar ages.  相似文献   

14.
We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every  1.846 834 ± 0.000 002  d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have   T eff= 6400 ± 100 K  and  log   g = 4.25 ± 0.05  which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of  1.76+0.08−0.14 M J  and radius  1.31+0.07−0.14 R J  for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.  相似文献   

15.
系外行星直接成像探测能够获取系外行星更全面的物理信息,是未来搜寻系外生命的关键技术之一.针对近期地基望远镜高对比度成像观测数据,对新发现的多星候选体进行系统展示.前期,结合地基系外行星高对比度成像设备观测能力,从已发表文献整理的Gaia星表恒星数据中筛选,得到约1000个观测目标.这些目标分布于不同的年轻星团中.近期,使用Palomar天文台Hale望远镜对上述观测目标中的42个目标在K波段开展了高对比度成像观测.这些目标恒星在可见光波段为7.5-14.2019年经过两轮观测,发现了6个多星系统候选体,这些目标在Gaia Data Release 2星表和Gaia early Data Release 3星表中难以确认是单星还是多星系统.  相似文献   

16.
Precise measurements of Doppler shifts of lines in stellar spectra allowing the radial velocity to be measured are an important field of astrophysical studies. A remarkable feature of the Doppler spectroscopy is the possibility to reliably measure quite small variations of the radial velocities (its acceleration, in fact) during long periods of time. Influence of a planet on a star is an example of such a variation. Under the influence of a planet rotating around a star, the latter demonstrates periodic motion manifested in the Doppler shift of the stellar spectrum. Precise measurements of this shift made it possible to indirectly discover planets outside the Solar system (exoplanets). Along with this, searching for Earth-type exoplanets within the habitable zone is an important challenge. For this purpose, accuracy of spectral measurements has to allow one to determine radial velocity variations at the level of centimeters per second during the timespans of about a year. Suchmeasurements on the periods of 10–15 years also would serve as a directmethod for determination of assumed acceleration of the Universe expansion. However, the required accuracy of spectroscopic measurements for this exceeds the possibilities of the traditional spectroscopy (an iodine cell, spectral lamps). Methods of radical improvement of possibilities of astronomical Doppler spectroscopy allowing one to attain the required measurement accuracy of Doppler shifts are considered. The issue of precise calibration can be solved through creating a system of a laser optical frequency generator of an exceptionally high accuracy and stability.  相似文献   

17.
The direct-imaging exploration can obtain comprehensive physical information of exoplanets, which is a key technology to search for extraterrestrial life in the future. In this paper, based on our recent high-contrast imaging data of ground-based telescope, the newly discovered multi-star candidates are presented. In the early stage, combined with the ability of high-contrast imaging equipment for the exoplanets in the ground-based system, we select about 1000 targets from published works which are compiled using the catalogs released by Gaia. These targets are distributed in different young star clusters. Recently, we used Hale Telescope at Palomar Observatory to carry out high-contrast imaging observation on 42 of the above targets in the K-band. Most of the observed targets are 7.5–14 in the V-band. In 2019, after two rounds of observation, we discover six multi-star system candidates. It is however difficult to find out whether these targets are single-star or multi-star systems in Gaia DR2 (Data Release 2) catalog and Gaia EDR3 (early Data Release 3) catalog.  相似文献   

18.
The satellite PLATO represents a new challenge for future investigations of exoplanets and oscillations of stars. It is one of the proposed missions of ESA COSMIC VISION 2015–2025 and it is scheduled for launch in 2017. The goal of the mission is a full characterization of the planet star systems with an asteroseismic analysis of the host stars. The PLATO Payload Consortium (PPLC) includes several European countries which are employed in the assessment study of the mission. Thanks to the high precision photometry, PLATO is thought to be able to detect planets and oscillations within a large sample of targets.  相似文献   

19.
We present the results of ground based observations and model analysis of transits of exoplanets WASP-33b, WASP-43b, WASP-104b, and HD 219134b. Broadband transmission spectra (dependence of the observed radii on wavelength) have been plotted for all exoplanets, ranging from the near-UV to the IR region. We show that the transmission spectrum of WASP-33b is, within errors, flat in the range of 3800 Å to 12 000 Å. The derived broadband spectrum of WASP-43b is also flat in the first approximation, although other authors have reported the presence of absorption lines of various chemical elements in the narrow bands. Model spectra of WASP-43b taken from the literature and based on IR data allowed us to obtain a direct estimate of its nighttime temperature. We present and analyze the results of ground based observations which confirm the discovery of a transiting super-Earth in the HD 219134 star system. Signs of this planet’s existence were discovered earlier during the radial velocity analysis of the star, as well as transit observations with the Spitzer space telescope in the IR.At the estimated time, we registered a transit in the near-UV range several times. The transit depth measured in the U-band of the Johnson photometric system amounts to 0.13% ± 0.027%, which is deeper than the one based on Spitzer measurements. We discuss the possible causes of this difference.  相似文献   

20.
Solar System Research - To build the mass distribution of exoplanets discovered with the method of measuring the radial velocities, it is necessary to take into consideration the observational...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号