首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Melt-origin pseudotachylytes are the most widely accepted feature recording earthquake slip in the fault rock record. However, reports of pseudotachylytes are rare compared to the frequency and distribution of earthquakes in active faults, suggesting melting occurs only under exceptional circumstances and therefore that pseudotachylytes are rarely formed. In this paper, we document the processes whereby pseudotachylytes are overprinted, destroyed and otherwise removed from the rock record. We present examples of recrystallized, altered, and cataclastically and crystal plastically deformed pseudotachylytes from a variety of ancient faults. Based on these observations, we identify characteristics of pseudotachylytes that are resistant to change over geologic time and develop criteria to allow recognition of relict pseudotachylytes. Our results imply that pseudotachylytes are vastly under-reported due to their vulnerability to destruction and the resulting difficulty in identification. As a consequence, the significance of frictional melting is underestimated. The criteria we propose to distinguish relict pseudotachylytes can help to reconcile the observed frequency of earthquakes with the difficulty of demonstrating ancient seismic slip in the rock record.  相似文献   

2.
Compositional variations are documented in friction melts along the Hari Hari section of the Alpine Fault, New Zealand, with multiple stages of melt injection into quartzo-feldspathic schists. Intermediate to felsic melts were heterogeneous in composition, but all fractions show a common trend, with a tendency for the younger melt layers and glasses to be more alkali − (Na + K) and Si-enriched, while being depleted in mafic (Fe + Mg + Mn) components. These changes are attributed primarily to crystal fractionation of the melt during transport. Farther traveled molten layers were on the whole less viscous, mostly due to a higher melt-to-clast ratio; however, compositional change, together with a decrease in volatile content, produced a progressively more viscous liquid melt with time. The glass phase is interpreted as a remnant of this high viscosity felsic residual melt that was preserved during final quenching. Following initial failure, the formation of largely phyllosilicate-derived, volatile-rich, lower viscosity melt corresponds with a phase of fault weakening. Subsequent rapid crystal fractionation during melt transport, the loss of volatiles and freezing of residual melt contributed to the strengthening of the fault during seismic slip.  相似文献   

3.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   

4.
Northern Thessaly may represent an important seismic gap within the broader Aegean Region, with major faults bordering the ESE–WNW trending Late Pleistocene–Holocene Tyrnavos Basin. In order to obtain information about the characteristics of past earthquakes and improve our knowledge on the seismic potential of the investigated area, historical and archaeological observations are analysed and compared with the results of palaeoseismological trenches excavated across one of the major bordering structures, the Tyrnavos Fault. The former data clearly document (i) a strong seismic activity affecting the area during the last 2–3 ka and (ii) the occurrence of recent earthquakes not included in the seismic catalogues. Also, the sedimentological, structural and chronological data (TL, OSL and AMS) obtained from the palaeoseismological trenches indicate Late Pleistocene to Holocene morphogenic activity of the Tyrnavos Fault, characterised by vertical co-seismic displacements of 20–40 cm and possible return periods of a few thousands of years. Advantages and limitations in using historical and archaeoseismological data are discussed, as well as the problems arising from analysing low slip-rate faults.  相似文献   

5.
The Woodroffe thrust, central Australia, is a > 1.5-km-wide mylonitized shear zone marked by large volumes of mm- to cm-scale pseudotachylyte veins. The pseudotachylytes display typical melt-origin features, including rounded and embayed clasts, spherulitic and dentritic microlites, and flow structures within a fine-grained matrix. Three types of pseudotachylyte are identified on the basis of deformation texture, vein morphology, and host-rock lithology: cataclasite-related (C-Pt), mylonite-related (M-Pt), and ultramylonite-related (Um-Pt). The M-Pt and Um-Pt veins intrude into mylonite and ultramylonite and are themselves overprinted by subsequent mylonitization. These pseudotachylytes contain an internal foliation defined by flattened porphyroclasts and layering of the fine-grained vein matrix, and the foliation is generally oriented parallel to foliation in the surrounding mylonite and ultramylonite. These observations constrain the timing and environment of M-Pt and Um-Pt pseudotachylyte formation to a protracted period of deformation and mylonitization within the ductile regime of the crust. The M-Pt and Um-Pt veins, as well as the host mylonite, are overprinted by cataclasis and multiple generations of late-stage C-Pt veins that were generated in the brittle-dominated regime of the upper crust during uplift and exhumation of the shear zone.The coexistence of multiple generations of voluminous C-Pt, M-Pt, and Um-Pt veins indicates that the pseudotachylyte veins represent a large number of large earthquakes and accompanying seismic slip over an extended period of seismicity on the Woodroffe thrust. The timing and distribution of pseudotachylyte indicate that the earthquakes nucleated at the base of the brittle-dominated seismogenic zone and propagated down through the brittle–ductile transition into the ductile-dominated regime of the crust.  相似文献   

6.
The effect of open and filled slip surfaces on the upscaled permeability of two fault zones with 6 and 14 m strike-slip in an eolian Aztec Sandstone, Nevada, USA is evaluated. Each fault zone is composed of several fault components: a fault core, bounded by filled through-going slip surfaces referred to as slip bands, and a surrounding damage zone that contains joints and deformation bands. Slip band geometry, composition, and petrophysical properties are characterized. Measurements and modeling show that slip band permeabilities can vary over 12 orders of magnitude depending on the degree of fill within the slip bands. The slip bands along with other fault zone components are represented in finite volume numerical calculations and the impact of various slip-band representations on upscaled fault zone permeability is tested. The results show 2 orders of magnitude variation in upscaled fault zone permeability in the fault-normal direction and a factor of 2 variation in the fault-parallel direction. The numerical results presented here are compared to the earlier numerical results in which structured Cartesian grids were used for the numerical simulations, and are in qualitative agreement with earlier calculations but use about a factor of 250–400 fewer numerical cells.  相似文献   

7.
The western part of the North Anatolian Shear Zone at the southern boundary of the Central Pontides in Turkey, was investigated in the Kurşunlu-Araç area by means of a geological-structural field study. In this area the North Anatolian Shear Zone results in a transpressional deformation zone that extends between two master faults striking parallel to the main shear direction. The main systems of structures identified in the deformation zone appear to be oriented parallel to the directions predicted by Riedel theoretical model. Nevertheless, the strain partitioning is more complicated than predicted by theory. The structural analysis suggests a polyphase deformation characterized by a steady component of transcurrence associated with alternance of compression and extension. Along each of theoretical directions the combination of double verging structures can be observed, with folds and thrust surfaces root into high-angle shear zones, according to flower-type geometries. The discrepancies of directions, kinematics and geometries from theoretical models are due to transpressive and/or transtensive nature of the deformation. According to the observed outcropping structures, we propose a conceptual model for the North Anatolian Shear Zone, interpreting it as a crustal-scale positive flower structure.  相似文献   

8.
The St. Lawrence rift system from the Laurentian craton core to the offshore St. Lawrence River system is a seismically active zone in which fault reactivation is believed to occur along late Proterozoic to early Paleozoic normal faults related to the opening of the Iapetus ocean. The rift-related faults fringe the contact between the Grenvillian basement to the NW and Cambrian–Ordovician rocks of the St. Lawrence Lowlands to the SE and occur also within the Grenvillian basement. The St. Lawrence rift system trends NE–SW and represents a SE-dipping half-graben that links the NW–SE-trending Ottawa–Bonnechère and Saguenay River grabens, both interpreted as Iapetan failed arms. Coastal sections of the St. Lawrence River that expose fault rocks related to the St. Lawrence rift system have been studied between Québec city and the Saguenay River. Brittle faults marking the St. Lawrence rift system consist of NE- and NW-trending structures that show mutual crosscutting relationships. Fault rocks consist of fault breccias, cataclasites and pseudotachylytes. Field relationships suggest that the various types of fault rocks are associated with the same tectonic event. High-resolution marine seismic reflection data acquired in the St. Lawrence River estuary, between Rimouski, the Saguenay River and Forestville, identify submarine topographic relief attributed to the St. Lawrence rift system. Northeast-trending seismic reflection profiles show a basement geometry that agrees with onshore structural features. Northwest-trending seismic profiles suggest that normal faults fringing the St. Lawrence River are associated with a major topographic depression in the estuary, the Laurentian Channel trough, with up to 700 m of basement relief. A two-way travel-time to bedrock map, based on seismic data from the St. Lawrence estuary, and comparison with the onshore rift segment suggest that the Laurentian Channel trough varies from a half-graben to a graben structure from SW to NE. It is speculated that natural gas occurrences within both the onshore and offshore sequences of unconsolidated Quaternary deposits are possibly related to degassing processes of basement rocks, and that hydrocarbons were drained upward by the rift faults.  相似文献   

9.
Maximum magnitude is an important input parameter in seismic hazard analysis, but may be difficult to determine directly on the basis of available seismological data. Moreover, there is evidence that the scaling law relating maximum magnitude to fault length for inter-plate faults may differ from the law for intra-plate faults. Thus uncertainty as to the fault type can complicate the problem of determining maximum magnitude. We present a method for examining the implications for seismic hazard analysis of uncertainty regarding fault type. We apply the method to a simple constructed example and find that the problem of assessing fault type can be far more critical to the hazard assessment than the exact statement of fault geometry, especially for sites that are distant from the fault.The opinions and conditions presented in this paper do not neccessarily reflect the official position of the Licensing Division of the Israel Atomic Energy Commission.  相似文献   

10.
We investigate the structural style and evolution of a salt-influenced, extensional fault array in the Egersund Basin (Norwegian North Sea) through analysis of 3D reflection seismic and well data. Analysis of fault geometry/morphology, throw distribution and syn-kinematic strata reveal an intricate but systematic style of displacement and growth, suggesting an evolution of (1) initial syn-sedimentary fault growth contemporaneous with salt mobilization initiated during the Late Triassic, (2) cessation of fault activity and burial of the stagnant fault tips, and (3) subsequent nucleation of new faults in the cover above contemporaneous salt re-mobilization initiated during the Late Cretaceous, with downward propagation and linkage with faults. Stage 3 was apparently largely controlled by salt mobilization in response to basin inversion, as reactivated faults are located where the underlying salt is thick, while the non-reactivated faults are found where salt is depleted. Based on the 3D-throw analyses, we conclude that a combination of basement faulting and salt (re-) mobilization is the driving mechanisms behind fault activation and reactivation. Even though the sub- and supra-salt faults are mainly geometrically decoupled through the salt, a kinematic coupling must have existed as sub-salt faults still affected nucleation and localization of the cover faults.  相似文献   

11.
Areas of low strain rate are typically characterized by low to moderate seismicity. The earthquake catalogs for these regions do not usually include large earthquakes because of their long recurrence periods. In cases where the recurrence period of large earthquakes is much longer than the catalog time span, probabilistic seismic hazard is underestimated. The information provided by geological and paleo-seismological studies can potentially improve seismic hazard estimation through renewal models, which assume characteristic earthquakes. In this work, we compare the differences produced when active faults in the northwestern margin of the València trough are introduced in hazard analysis. The differences between the models demonstrate that the introduction of faults in zones characterized by low seismic activity can give rise to significant changes in the hazard values and location. The earthquake and fault seismic parameters (recurrence interval, segmentation or fault length that controls the maximum magnitude earthquake and time elapsed since the last event or Te) were studied to ascertain their effect on the final hazard results. The most critical parameter is the recurrence interval, where shorter recurrences produce higher hazard values. The next most important parameter is the fault segmentation. Higher hazard values are obtained when the fault has segments capable of producing big earthquakes. Finally, the least critical parameter is the time elapsed since the last event (Te), when longer Te produces higher hazard values.  相似文献   

12.
This paper discusses the possible influence of syn-sedimentary structures on the development of orogenic structures during positive tectonic inversion in the inner Northern Apennines (Italy). Examples from key areas located in southern Tuscany provided original cartographic, structural and kinematics data for Late Oligocene-Early Miocene thrusts, organized in duplex systems, verging in the opposite direction of the foreland propagation (back-thrusts), which affected the Late Triassic-Oligocene sedimentary succession of the Tuscan Domain, previously affected by pre-orogenic structures. These latter consist of mesoscopic-to cartographic-scale Jurassic syn-sedimentary normal faults and extensional structures, which gave rise to effective stratigraphic lateral variation and mechanical heterogeneities. Structural analysis of both syn-sedimentary faults and back-thrusts were therefore compared in order to discuss the possible role of the pre-existing anisotropies in influencing the evolution of the back-thrusts. As a result, it can be reasonably proposed that back-thrusts trajectories and stacking pattern were controlled by relevant syn-sedimentary normal faults; these latter were reactivated, in some cases, if properly oriented. Such an issue adds new inputs for discussing the potential role of structural inheritance during tectonic inversions, and helps to better understand the processes suitable for the development of back-thrusts in the inner zones of orogenic belts, as it is the case of the inner Northern Apennines.  相似文献   

13.
E. Carminati  G.B. Siletto   《Tectonophysics》2005,401(3-4):179-197
The internal sectors of the Orobic Alps (Northern Italy) are characterised by Alpine age regional shortening showing a transition, through time, from plastic to brittle deformation. Thrust faults cut Alpine ductile folds and are marked by cataclasites and, locally, by pseudotachylytes, suggesting that motion was accommodated by seismic frictional slip. In the Eastern Orobic Alps the thrusting initiated at depths deeper than 10 km (the emplacement depth of the Adamello pluton) and possibly continued at shallower depths. This demonstrates that thrust motion occurred between 10 km depth and the brittle-ductile transition, i.e., at mid-crustal depths. The Orobic Alps exhumed paleoseismic zone shows different geometries along strike. In the central sectors of the Orobic Alps, thrust faults, associated with pseudotachylytes, have average dips around 40° and show no pervasive veining. Much steeper thrusts (dips up to about 85°) occur in the eastern Orobic Alps. In this area, faults are not associated with pervasive veining, i.e., fluid circulation was relatively scarce. This suggests that faulting did not occur with supralithostatic fluid pressure conditions. These reverse faults are severely misoriented (far too steep) for fault reactivation in a sublithostatic fluid pressure regime. We suggest that thrust motion likely started when the faults were less steep and that the faults were progressively rotated up to the present day dips. Domino tilting is probably responsible for this subsequent fault steepening, as suggested by a decrease of the steepness of thrust faults from north to south and by systematic rotations of previous structures consistently with tilting of thrust blocks. When the faults became inclined beyond the fault lock-up angle, no further thrusting was accommodated along them. At later stages regional shortening was accommodated by newly formed lower angle shear planes (dipping around 30–40°), consistently with predictions from fault mechanics.  相似文献   

14.
The earthquake cycles that characterize continental-interior areas that are far from active plate boundaries have proven highly cryptic and difficult to resolve. We used a novel paleoseismic proxy to address this issue. Namely, we reconstructed Holocene Mississippi River channels from maps of floodplain strata in order to identify channel perturbations reflective of major displacement events on the high-hazard and mid-plate Reelfoot thrust fault, New Madrid seismic zone, U.S.A. Only three discrete slip events are currently documented for the Reelfoot fault ( AD 900,  AD 1450, and AD 1812). This study extends this record and, thus, illustrates the utility of stratigraphic proxies as paleoseismic tools. We concurrently offer here some of the first quantified response times for tectonically induced channel pattern changes in large alluvial rivers.

We identified at least two cycles of pervasive meandering that were interrupted by channel-straightening responses occurring upstream of the Reelfoot fault scarp. These straightening responses initiated at 2244 BC +/− 269 to 1620 BC +/− 220 and  AD 900, respectively, and each records initiation of a period of Reelfoot fault slip after millennia of relative tectonic quiescence. The second (or New Madrid) straightening response was triggered by the previously known  AD 900 fault slip event, and this initial low sinuosity has been protracted until the modern day by the latter  AD 1450 and AD 1812 events. The first (or Bondurant) straightening response began a period of several hundred to  1400 years of low river sinuosity which evidences a similar period of multiple recurrent displacement events on the Reelfoot fault. These Bondurant events predate the existing paleoseismic record for the Reelfoot fault.

These data offer initial evidence that slip events on the Reelfoot fault were temporally clustered on millennial scales and, thus, offers the first direct evidence for millennial-scale clustering of earthquakes on a continental-interior fault. This carries additional ramifications. Namely, faults that have been quiescent and non-hazardous for millennia could re-enter an enduring period of recurrent hazardous earthquakes with little warning. Likewise, the Reelfoot fault also reveals evidence of temporal clustering of earthquakes on short-term cycles (months), as well as evidence for longer-term reactivation cycles (104–106 years). This introduces the possibility that temporal clustering could be hierarchical on some continental-interior faults.  相似文献   


15.
The relationship between deformation and so-called fluid paleotransfers in minor faults has been analysed in an argillaceous formation located in the Causses Basin in France. The fluid paleotransfers are related to the fault activity to a large extent. We attempt to estimate the intensity of paleo-deviatoric stress magnitudes under which the fault activity may have occurred and consequently, the change in the structural fault permeability. The paleo-deviatoric stress magnitudes were calculated with the inverse method of Etchecopar applied to calcite twinning. The measured crystals are contained within the core zone of minor faults and this study is based on a previous complete microtectonic and microstructural analysis of the faults. In this paper, analysis of calcite twinning has been applied for the first time to vein fillings associated small faults in a context of relatively weak deformation, a condition ensured by the tectonic and structural analysis. Calculation and discussion of the paleo-deviatoric stress tensors in relation to the evolution of the structural fault permeability and to the hydraulic behaviour of the faults are the aim of this paper. The analysed faults, created and active during the same tectonic event, were permeable under a (σ1σ3) mean value of 40–50 MPa. On the other hand, the reactivation of faults during a second tectonic event implies mean (σ1σ3) value higher than 40–50 MPa, especially for the faults that are poorly oriented with respect to the principal tectonic stress directions. The core zone of these faults remained sealed and impermeable or became permeable by development of microcracks inside the pre-existing fillings.  相似文献   

16.
Examination of the interaction area of conjugate faults yields evidence of a yet unknown structural pattern. Analogue experiments revealed the evolution of this pattern during the interaction process. A fault propagating towards the highly active section of another conjugate fault becomes increasingly deflected towards the obtuse angle side of the conjugate system while approaching until joining it. During this process, the tip of the curved propagating fault retains its shear sense until immediately before joining with the highly active fault—a process called “confluence” in this report. Under constant remote stress, the deflected fault now becomes dominant. A fault branch splits off at the point where deflection commences, propagating straight ahead of the original direction, and may dissect the former master fault. Alternating activity at both of the faults finally produces the known intersection patterns. Further studies of the proposed concept on natural examples are recommended due to the close geometric similarity of the evolutionary structural stages and natural fault patterns.  相似文献   

17.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

18.
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.  相似文献   

19.

基于渤海湾盆地牛庄洼陷的3D地震精细构造解释成果,本文揭示了伸展盆地内部正断层由旋转正断层向连通的铲式正断层递进演化过程,该演化过程划分为4个阶段:以旋转平面型正断层为主要类型的初始阶段,以多米诺断阶为主要类型的发展阶段,以单条独立铲式正断层为主要类型的成熟阶段以及以连通铲式正断层为主要类型的高成熟阶段;并建立了在伸展量的递进增加且浅层存在滑脱层的地质条件下,旋转平面型正断层向铲式正断层递进演化模式。通过分析研究区剖面伸展量数据以及系列断层断距的变化,认为伸展量在不同级别断裂(主干断裂与次级断裂)之间的分配方式是研究区该递进演化过程的主控因素。本文提出的伸展盆地内部正断层递进演化过程及其模式将有助于丰富与完善伸展盆地正断层递进演化理论,同时也可为伸展量较大的背景下,正断层样式演化程度较低的现象提供一种新的成因解释。

  相似文献   

20.
Shmuel Marco   《Tectonophysics》2007,445(3-4):186-199
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号