首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


2.
The Abitibi belt is one of the largest and most extensively studied Late Archean greenstone belts. The structural geology of the Abitibi belt consists of one generation of upright to slightly overturned, doubly plunging first-order folds with half-wavelengths of 20–60 km, and E–W-striking, steeply dipping fault zones that are parallel to the fold limbs. Two of the main fault zones are continuous for hundreds of kilometers. Previous tectonic models for the Abitibi belt interpret the fault zones to have formed as extensional growth faults bounding a volcanic-sedimentary basin, which were reactivated as thrusts during subsequent crustal shortening. Other models propose that the fault zones represent tectonic sutures, implying that the Abitibi belt is a collage of exotic terranes. However, distinct geological terranes have not been geologically demonstrated. We propose a new detachment fold model for the deformational history of the southern Abitibi belt, in Ontario, that explains the formation of the fault zones during the single, well-documented folding event that deformed the entire region. The internal structure of the fault zones, documented here with emphasis on the Porcupine–Destor fault zone, consists of isoclinally folded, strongly schistose, highly metamorphosed rock, cross-cut by numerous fault segments. We interpret that the upper crust (greenstones) was folded above a proposed detachment in the lower part of the volcanic stratigraphy. The fault zones would be, in essence, highly evolved detachment anticlines. Ultramafic metavolcanic rock that crops out within the fault zones would represent material from the detachment horizon that was emplaced in the cores of the detachment anticlines. The numerous segments that make up the mapped fault zones would be linked faults that formed within the isoclinal detachment anticlines to accommodate folding of the rheologically complex greenstones. The detachment fold model is compared to the results of analogue experiments designed to investigate crustal-scale folding, using viscous and frictional materials. Detachment folds are produced in the brittle upper crustal analogue on the limbs of folds formed in the ductile middle and lower crust analogues. The experimentally produced structures scale to the structures in the study area and indicate the detachment fold model for the southern Abitibi is mechanically viable.  相似文献   

3.
In this paper, we investigate normal fault patterns produced by the sliding motion along a gently dipping normal fault by using analogue model tests and numerical modeling. The motivation for this study was offered by microseismic test data that indicate the existence of an active low-angle shear zone at a depth of 9–11 km in the extensional region of high seismic activity of the Gulf of Corinth (Greece). Both modeling techniques seem to support the hypothesis that the system of high-angle normal faults that are responsible for the final asymmetrical graben formation initiate at the tip of the active basal detachment nearest to the free surface. The normal faults propagate upwards with progressive sliding of the inclined basal plane, resulting in a first phase of symmetrical graben configuration that is delimited by a main synthetic fault and an antithetic fault forming a Rankine zone. Subsequent sliding on the inclined base induces a family of secondary antithetic normal faults, which are responsible for the asymmetry of the failure pattern and the diffusive character of deformation in that area. Shear deformation is more intense and localized along the synthetic normal fault than along the antithetic faults. Elaboration on the analogue test results has led to the phenomenological relations among four main parameters that describe the geometry of grabens, namely, (i) the width and (ii) the maximum subsidence of the graben, (iii) the dip angles of the conjugate normal faults, and (iv) the amount of sliding along the low-angle normal fault. However, analogue models do not produce the system of synthetic faults that is observed in the Gulf of Corinth. The effects of both friction angle variation along the detachment base and of the constitutive behavior of the model material on the configuration of the final structural pattern were also studied with a series of numerical continuum models. It was found that (a) the fault pattern of the Gulf of Corinth may be reproduced with either a strain-softening material with low elastic modulus or a constant strength material, and (b) two consecutive grabens, such as those of Gulfs of Corinth and Evia, may also be reproduced by an appropriate combination of variation of dip and frictional properties along the hypothesized detachment zone.  相似文献   

4.
The Rides Prerifaines (RP) of Morocco constitute the leading edge of the Rif chain. They involve a Triassic–Palaeocene succession deposited on a peneplained Palaeozoic fold belt and accumulated in basins delimited by NE–SW-trending normal fault systems. A significant hiatus separates an overlying Middle Miocene–Upper Miocene foredeep sequence. The reconstruction of the complex structural evolution of the RP during the later compressive phases that affected the Rif chain since Middle Miocene time has been the aim of this paper. We integrated field structural analyses, seismic line interpretation, and analogue modelling in order to evaluate the control exerted by the Late Triassic–Jurassic normal fault systems onto the later compressive tectonics. The maximum compression direction associated with the first compressive phase is roughly NE–SW to ENE–WSW oriented. During this phase the Mesozoic basin fill was scooped-out from the graben and the main décollement level were the Triassic evaporites. Since Pliocene times the maximum compression direction was oriented roughly N–S. During this phase the RP assumed their present structural setting. The earlier normal faults delimiting the Mesozoic graben were reactivated in a strike–slip mode also involving the Palaeozoic basement. The analogue modelling experiments demonstrated that the basement reactivation promoted salt tectonics and favoured fluid circulation.  相似文献   

5.
The rotational behaviour of a rigid particle embedded in a linear viscous matrix undergoing cylindrical simple shear (Couette) flow was studied in 2D rock-analogue experiments. The influence of particle shape (elliptical vs. monoclinic), aspect ratio and the nature of the matrix/particle interface (lubricated vs. unlubricated) was investigated. Both matrix (PDMS) and lubricant (liquid soap) were linear viscous, with a viscosity ratio of ca. 104. Without lubricant, the rotational behaviour of all particles closely approximates the Jeffery theory. Lubricated monoclinic particles with the long diagonal initially parallel to the shear direction show back rotation and approach a stable position. Lubricated elliptical particles initially parallel to the shear direction also show back rotation but only transiently stabilize. Weak planar zones in the matrix adjacent to unlubricated elliptical particles do not induce backward rotation. In general for elliptical particles, rotation rate as a function of orientation depends on axial ratio and thickness of the lubricant mantle. For thick mantles (initially >10% of the volume of the particle), rotation rates are faster than Jeffery theory. For very thin mantles they are markedly slower compared with thick mantles, particularly when the long axis is nearly parallel to the shear direction. Rotation rates are never strictly zero, so true stabilization does not occur. However, for more elongate particles (axial RATIO=6) rotation rates are so slow that a very strong shape preferred orientation would develop in a lubricated elliptical particle population. In experiments, the volume of lubricant is constant and the thickness adjacent to the long side of the particle progressively decreases with increasing strain. In natural examples of porphyroclast systems, the weak mantle continually develops by recrystallization and/or cataclasis of the rigid clast core and a steady state between production and thinning could be attained, potentially leading to true stabilization for particles with a high axial ratio.  相似文献   

6.
Fault tip regions, relay ramps and accommodation zones in between major segments of extensional fault systems provide zones of additional structural and stratigraphic complexities and also significantly affect their hydraulic behaviour. The great interest for both academic and industrial purposes encouraged specific studies of fault tip regions that, in some cases, produced controversial results. We approached the study of fault tip regions by integrating structural, AMS and stratigraphic analyses of the tip of an extensional growth fault system in the Tarquinia basin, on the Tyrrhenian side of the Northern Apennines. Detailed structural mapping indicates the occurrence of systematic relationships between the orientation of the main subsidiary fault zones, the orientation and position of the two main joint sets developed in the fault damage zones, and the overprinting relationships between the two main joint sets themselves. Microstructural analysis of fault core rocks indicates a progression of deformation from soft-sediment to brittle conditions. The AMS study supports the evolution of deformation under a constantly oriented stress field. By combining this multidisciplinary information we propose an evolutionary model for the tip of the extensional growth fault system that accounts for the progressively changing sediment rheological properties, and for the time dependent subsidiary deformation pattern by invoking the interplay between the regional stress field and the local, kinematically-derived one by fault activity. We also speculate on the overall implications for fluid flow of the proposed evolutionary model.  相似文献   

7.
Damage surrounding the core of faults is represented by deformation on a range of scales from microfracturing of the rock matrix to macroscopic fracture networks. The spatial distribution and geometric characterization of damage at various scales can help to predict fault growth processes, subsequent mechanics, bulk hydraulic and seismological properties of a fault zone. Within the excellently exposed Atacama fault system, northern Chile, micro- and macroscale fracture densities and orientation surrounding strike-slip faults with well-constrained displacements ranging over nearly 5 orders of magnitude (0.12 m–5000 m) have been analyzed. Faults have been studied that cut granodiorite and have been passively exhumed from 6 to 10 km depth. This allows direct comparison of the damage surrounding faults of different displacements. The faults consist of a fault core and associated damage zone. Macrofractures in the damage zone are predominantly shear fractures orientated at high angles to the faults studied. They have a reasonably well-defined exponential decrease with distance from the fault core. Microfractures are a combination of open, healed, partially healed and fluid inclusion planes (FIPs). FIPs are the earliest set of fractures and show an exponential decrease in fracture density with perpendicular distance from the fault core. Later microfractures do not show a clear relationship of microfracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement but appear to reach a maximum at a few km displacement. One fault, where damage was characterized on both sides of the fault core shows no damage asymmetry. All faults appear to have a critical microfracture density at the fault core/damage zone boundary that is independent of displacement. An empirical relationship for microfracture density distribution with displacement is presented. Preferred FIP orientations have a high angle to the fault close to the fault core and become more diffuse with distance. Models that predict off-fault damage such as a migrating process zone during fault formation, wear from geometrical irregularities and dynamic rupture are all consistent with our data. We conclude it is very difficult to distinguish between them on the basis of field data alone, at least within the limits of this study.  相似文献   

8.
Preseismic lithospheric deformation at a subduction zone can be modelled as dip-slip dislocation on an inclined fault or as flexure of a thin plate. Both these models predict a region of positive topography known as forebulge or outer rise. By matching the location and the magnitude of the forebulge, we derive useful relations between the dip-slip fault parameters and the plate parameters. In particular, we determine the width of a long dip-slip fault of given dip corresponding to a semi-infinite plate of given thickness. The displacement profiles of the two models are also compared.  相似文献   

9.
Abstract

The present contact caused by the superposition of the Alpujarride complex over that of the Nevado-Filabride in the western area of Sierra Nevada and Sierra de Filábres corresponds to a detachment. The deformation in the footwall associated with this contact, produced mylonitic fabrics with a significant stretching-lineation, over which brittle structures are superimposed. The deformation in the hanging wall associated with this contact is, on the other hand, essentially brittle. These deformations are subsequent to a series of syn-to post-metamorphic structures related to thrust phases.

The micro- and meso-structures indicate that the hanging wall has moved towards the west-south-west.

Other brittle structures, which began during the same extensional regime, are superimposed on the detachment and have continued to develop up to the present time. These structures were produced in an extensional regime with a non-coaxial deformation component and suggest the possibility of a tectonic evolution similar to that described for core complexes in the USA.  相似文献   

10.
四川汶川5.12大地震同震滑动断层泥的发现及意义   总被引:4,自引:0,他引:4  
付碧宏  王萍  孔屏  郑国东  王刚  时丕龙 《岩石学报》2008,24(10):2237-2243
2008年汶川8.0级地震沿龙门山断裂带内的映秀—北川断裂和灌县—安县断裂产生了近300 km的同震地表破裂带。震后地质科学考察发现地表变形以逆冲为主,并伴有右旋走滑。地震地表破裂带大多沿古生代碳质泥岩、页岩和三叠系煤系地层内的滑动面出露地表,这些软弱地层为地震破裂带冲到地表提供了超低摩擦滑动带。我们发现在同震垂直和水平位错达6m左右的地表破裂带,地震的同震滑动发生在厚度约0.5~2cm 的狭窄滑动带内,以发育新鲜的灰色断层泥为特征,这些断层泥是地震断层快速滑动过程中岩石—流体相互作用的结果。  相似文献   

11.
The earthquake cycles that characterize continental-interior areas that are far from active plate boundaries have proven highly cryptic and difficult to resolve. We used a novel paleoseismic proxy to address this issue. Namely, we reconstructed Holocene Mississippi River channels from maps of floodplain strata in order to identify channel perturbations reflective of major displacement events on the high-hazard and mid-plate Reelfoot thrust fault, New Madrid seismic zone, U.S.A. Only three discrete slip events are currently documented for the Reelfoot fault ( AD 900,  AD 1450, and AD 1812). This study extends this record and, thus, illustrates the utility of stratigraphic proxies as paleoseismic tools. We concurrently offer here some of the first quantified response times for tectonically induced channel pattern changes in large alluvial rivers.

We identified at least two cycles of pervasive meandering that were interrupted by channel-straightening responses occurring upstream of the Reelfoot fault scarp. These straightening responses initiated at 2244 BC +/− 269 to 1620 BC +/− 220 and  AD 900, respectively, and each records initiation of a period of Reelfoot fault slip after millennia of relative tectonic quiescence. The second (or New Madrid) straightening response was triggered by the previously known  AD 900 fault slip event, and this initial low sinuosity has been protracted until the modern day by the latter  AD 1450 and AD 1812 events. The first (or Bondurant) straightening response began a period of several hundred to  1400 years of low river sinuosity which evidences a similar period of multiple recurrent displacement events on the Reelfoot fault. These Bondurant events predate the existing paleoseismic record for the Reelfoot fault.

These data offer initial evidence that slip events on the Reelfoot fault were temporally clustered on millennial scales and, thus, offers the first direct evidence for millennial-scale clustering of earthquakes on a continental-interior fault. This carries additional ramifications. Namely, faults that have been quiescent and non-hazardous for millennia could re-enter an enduring period of recurrent hazardous earthquakes with little warning. Likewise, the Reelfoot fault also reveals evidence of temporal clustering of earthquakes on short-term cycles (months), as well as evidence for longer-term reactivation cycles (104–106 years). This introduces the possibility that temporal clustering could be hierarchical on some continental-interior faults.  相似文献   


12.
We present results from petrophysical analysis of a normal fault zone with the aim of defining the flow pathways and their behavior during seismic and interseismic periods. Data are obtained on porosity geometry, strain structure and mineralogy of different domains of a normal fault zone in the Corinth rift. Data point out a close relationship between mineralogy of the clayey minerals, porosity network and strain structures and allow definition of a macroscopic anisotropy of the flow parameters with a strong control by microscopic ultracataclasite structures. The Pirgaki fault zone, developed within pelagic limestone, has a sharp asymmetric porosity profile, with a high porosity volume in the fault core and in the damage zone of the hanging wall. From porosity volumes and threshold measurements, a matrix permeability variation of 6 orders of magnitude could be expected between the protolith and the fault core. Modifications of this pathway during seismic and interseismic phases are depicted. Healing of cracks formed during seismic slip events occurred in the fault core zone and the porous network in the damage zone is sealed in a second step. The lens geometry of the fault core zone is associated with dissolution surfaces and open conduits where dissolved matter could move out of the fault core zone. These elementary processes are developed in particular along Riedel's structures and depend on the orientation of the strain surfaces relative to the local stress and depend also on the roughness of each surface type. P-surfaces are smooth and control shearing process. R-surfaces are rough and present two wavelengths of roughness. The long one controls localization of dissolution surfaces and conduits; the short one is characteristic of dissolution surfaces. The dissolved matter can precipitate in the open structures of the hanging wall damage zone, decreasing the connectivity of the macroscopic conduit developed within this part of the fault zone.  相似文献   

13.
四川汶川5.12大地震同震滑动断层泥的发现及构造意义   总被引:6,自引:0,他引:6  
2008年汶川8.0级地震沿龙门山断裂带内的映秀-北川断裂和灌县-安县断裂产生了近300km的同震地表破裂带。震后地质科学考察发现地表变形以逆冲为主,并伴有右旋走滑。地震地表破裂带大多沿古生代碳质泥岩、页岩和三叠系煤系地层内的滑动面出露地表,这些软弱地层为地震破裂带冲到地表提供了超低摩擦滑动带。我们发现在同震垂直和水平位错达6m左右的地袁破裂带,地震的同震滑动发生在厚度约O.5—2cm的狭窄滑动带内,以发育新鲜的灰色断层泥为特征,这些断层泥是地震断层快速滑动过程中岩石-流体相互作用的结果。  相似文献   

14.
The Tan-Lu fault zone (TLFZ) is the largest of the major faults in eastern China. Many strong earthquakes have occurred on its section in North China, but no quake greater than M  6 has been documented in history at its northeastern section, the Yilan-Yitong fault (YYF) in Northeast China. It is usually considered that this fault has been inactive since late Quaternary and incapable of generating moderate-sized quakes. This conclusion is, however, questioned by our recent work based on high-resolution satellite image interpretation and field investigation. We found a 70-km-long surface scarp near Fangzheng county in Heilongjiang province (HLJP) and a 20-km-long scarp near Shulan county in Jilin province (JLP), and both are associated with the YYF. The trenches across these two scarps reveal a 14C displacement date of 1730 ± 40 years BP at Fangzheng and of 4410 ± 30 years BP at Shulan. The dextral offsets of the Songhua River and Second Songhua River and nearly horizontal fault striations indicate that the new activity of the YYF has been dominated by dextral strike slipping with a normal component. These new data suggest that, at least for partial sections, the YYF has been active since the Holocene, implying a potential seismic hazard. However, current quake-protection standards in this region are very low due to the previous view that the YYF fault has not been active since the late Quaternary. If an M  7 quake takes place on this fault, it will be a devastating event. Therefore, it is necessary to conduct a detailed study on the whole YYF and to reassess its future seismic risk.  相似文献   

15.
The NW-SE oriented Sorgenfrei–Tornquist Zone (STZ) has been thoroughly studied during the last 25 years, especially by means of well data and seismic profiles. We present the results of a first brittle tectonic analysis based on about 850 dykes, veins and minor fault-slip data measured in the field in Scania, including paleostress reconstruction. We discuss the relationships between normal and strike-slip faulting in Scania since the Permian extension to the Late Cretaceous–Tertiary structural inversions. Our paleostress determinations reveal six successive or coeval main stress states in the evolution of Scania since the Permian. Two stress states correspond to normal faulting with NE-SW and NW-SE extensions, one stress state is mainly of reverse type with NE-SW compression, and three stress states are strike-slip in type with NNW-SSE, WNW-ESE and NNE-SSW directions of compression.The NE-SW extension partly corresponds to the Late Carboniferous–Permian important extensional period, dated by dykes and fault mineralisations. However extension existed along a similar direction during the Mesozoic. It has been locally observed until within the Danian. A perpendicular NW-SE extension reveals the occurrence of stress permutations. The NNW-SSE strike-slip episode is also expected to belong to the Late Carboniferous–Permian episode and is interpreted in terms of right-lateral wrench faulting along STZ-oriented faults. The inversion process has been characterised by reverse and strike-slip faulting related to the NE-SW compressional stress state.This study highlights the importance of extensional tectonics in northwest Europe since the end of the Palaeozoic until the end of the Cretaceous. The importance and role of wrench faulting in the tectonic evolution of the Sorgenfrei–Tornquist Zone are discussed.  相似文献   

16.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   

17.
Many deltas exhibit gravitational deformation of their sedimentary cover. In these systems, the décollement layers do not always consist of rock salt but sometimes of overpressured shale. Unlike salt, the efficiency of detachment in shale depends on the magnitude of fluid overpressures and it varies through time and space, as rapid sedimentary burial progrades into deeper water. As a result, the gravity deformational domains are progressively translated seaward. Sandbox models involving high air pore pressures were used to simulate such gravity-driven shale tectonics in prograding deltas. Models were built with sand of various permeabilities and air was injected to simulate the mechanical effects of fluid overpressure. Our apparatus for the injection of air allowed us to control subsurface pressures in space and time during the experiments, and it was used to simulate the advance of the front of the overpressured domain during the sedimentary progradation. In our models, sand kept obeying a frictional behavior, for medium to high pore pressures, and the detachment appeared as very thin shear bands. Compressional belts that formed during the experiment were dominated by asymmetric basinward-verging fore-thrusts, as is often observed in deep-water, shale-detached foldbelts. Where the value of fluid pressures approached that of the lithostatic stress, sand was fluidized, resulting in ductile strains analogous to what occurs in highly overpressured mobile shale. During progradation, ancient buried thrustbelts were reactivated, thereby controlling later extension. During the experiments, sand volcanoes, analogous to mud volcanoes, formed in relation with tectonic structures. Some of them developed near normal faults but many of them formed directly above old buried thrusts.  相似文献   

18.
A numerical model for a rotated clast in a sedimentary matrix is presented, quantifying the deformation in associated soft-sediment deformation structures. All the structures occur in a southwards prograding deltaic sequence within the Miocene Ingering Formation, deposited at the northern margin of the Fohnsdorf Basin (Eastern Alps, Austria). Debris flow and pelitic strata contain boudins, pinch-and-swell structures, ptygmatic folds, rotated top-to-S reverse faults and rigid clasts, developed under different stress conditions within the same layers. The deformation around a 24×10 cm trapezoid-shaped rigid clast, resembling the δ-clast geometry in metamorphic rocks, has been modelled using a 2D finite element modelling software. Under the chosen initial and boundary conditions the rotational behaviour of the clast mainly depends on the proportions of pure and simple shear; best fitting results were attained with a dominantly pure shear deformation (~65–85%), with stretching parallel and shortening normal to the bedding. In this specific model set-up, the initial sedimentary thickness is reduced by 30%, explained by stretching due to sediment creeping and compaction. The high amount of pure shear deformation proposed is compatible with the observed layer-parallel boudinage and pinch-and-swell structures. Rotated faults and ptygmatic folds were caused by the minor component of bedding-parallel simple shear.  相似文献   

19.
太行山东缘断裂是华北盆地西边界的控制性断裂,对研究华北盆地中-新生代油气藏、地震分布及成矿作用具有重要意义。通过对太行山东缘断裂南支断层几何学、运动学的详细研究以及对断层泥的X射线衍射分析、K-Ar同位素年代学研究,确定了太行山东缘断裂为枢纽性质正断层,由一系列北北东走向正断层组成,呈左阶阶梯状展布,断层活动时间为113.42±2.31 Ma。断裂在新生代再次活动,形成多幕式的断陷盆地。  相似文献   

20.
骆冠勇  蔡奇鹏  吴宏伟 《岩土力学》2012,33(10):2985-2990
地震断层错动会引起上覆土层变形,从而造成断层附近的建筑结构、管线产生附加的变形和内力引起破坏。通过一个土工离心机试验分析上覆饱和黏土层在4步连续断层错动作用下的静力响应行为。着重分析断层错动引起的地层变形的范围、不均匀沉降区的分布特点、剪切裂缝在土层传播路径及地表开裂的位置等工程上重点关注的问题。得到以下几点认识:(1) 基岩断层错动引起的地层变形范围基本上不受基岩错动量大小的影响。(2) 断层错动引起地层的不均匀沉降区基本呈三角形分布,其地表宽度约为1倍左右的土层厚度。(3) 基岩错动引起的主剪切裂缝基本沿竖直方向向上传播,其传播距离取决于基岩错动量及土体的破坏应变。(4) 基岩断层错动在主剪区的下盘一侧边缘会产生张拉裂缝,且产生张拉裂缝所需基岩错动量远小于产生剪切裂缝所需的错动量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号