首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2浓度急剧上升成为一个很严峻的问题,因此,降低大气CO2浓度成为当务之急.目前涉及的方案中的海洋封存、地质封存,虽封存潜力巨大,但带来的负面影响也不容小觑.CO2矿化利用实质是模拟自然界岩石化学风化,作为一种新兴的减排方案,既能固定大气CO2,生成具有工业附加值的碳酸盐产品,又能实现环境友好.能够矿化利用的原材料包括天然富钙、镁硅酸盐矿物,工业碱性废固、液,盐湖中的氯化镁资源等,矿化利用的方法也不尽相同.虽然硅酸盐岩的风化是如何控制长时间尺度的气候变化的机制还没有定论,但风化过程中具有固定大量CO2的潜力这一认识已达成共识.对含有大量硅酸盐矿物的尾矿矿化CO2的研究是目前的热点,介绍了尾矿矿化CO2的研究现状及几种重要尾矿矿物的矿化应用潜力.   相似文献   

2.
藏南碳酸岩脉成因及其气候效应   总被引:1,自引:0,他引:1  
刘焰 《地质科学》2013,48(2):384-405
始新世末期以来,全球大气CO2浓度持续下降,但长期以来不清楚为何这一时期全球大气CO2浓度下降,巨量的大气CO2赋存于何处。深入研究该问题有助于准确理解未来大气CO2浓度变化的趋势,特别是有助于进一步评估人类自身碳排放的后果。这一时期,小印度陆块持续与大亚洲陆块汇聚,导致了以喜马拉雅为代表的山脉群和青藏高原的形成。很早就有学者从地球表层碳循环的角度提出了"青藏高原的隆升导致了全球变冷"的观点,但这一观点既没有解释清楚"巨量大气CO2到何处去"的问题,也没有讨论青藏高原本身向大气圈排放CO2等问题,因此该观点最近受到了强烈的质疑。这些激烈的争论充分反映了传统的地球表层碳循环研究已不能充分满足当前社会的需求。本文从深部碳循环这个视角重新探讨青藏高原在全球碳循环中的作用。在印度与亚洲陆块持续汇聚期间,以喜马拉雅为代表的巨型山脉快速崛起,然后持续遭受化学风化作用,大量消耗大气CO2。化学风化的产物堆积在喜马拉雅山前的前陆盆地内,形成了巨量含新生碳酸盐矿物和有机碳的西瓦里克沉积杂岩,随后新生的西瓦里克杂岩又随持续平板俯冲的印度陆壳被带入青藏高原内部,与平板俯冲的印度陆壳共同经历高温变质作用。俯冲板片内的(黑)云母等含水矿物发生脱水,形成花岗岩浆。花岗岩浆再与俯冲的西瓦里克杂岩内的碳酸盐岩发生交代反应,释放出含钙、镁离子、以CO2和水为主的高温流体,本文称其为壳源火成碳酸岩浆。碳酸岩浆沿张性裂隙上侵、冷凝之后形成藏南的碳酸岩脉。虽然青藏高原内部的火山、温泉等均向大气圈排放CO2,但所排放的碳均为再循环来自大气圈的碳,并且排放量略小于吸收量,否则消耗大气CO2所新生的碳酸岩脉就不会在青藏高原内部保存下来。藏南大量晚新生代碳酸岩脉的发现充分说明了喜马拉雅山脉和藏南高原是一个巨大的碳储库,在其形成过程中将巨量大气CO2转化为流体(岩浆)的形式封存于青藏高原内部,从而大幅降低了大气CO2浓度,最终导致了全球变冷。上述过程充分说明,大气CO2浓度的变化实质上是受控于地球内部的构造运动。进一步可推论出,"全球变化"只是一个自然现象,虽然它有独特的运行轨迹,但与人类的碳排放量无因果关系。  相似文献   

3.
人类巨量碳排放究竟导致什么后果,争议颇大,只有深入研究始新世以来大气CO2浓度与环境变化,才有可能正确认识未来人类自身巨量碳排放之后果。大量研究揭示出: 从始新世到渐新世末期,大气CO2浓度大幅下降,全球变冷,形成了大陆冰川; 中新世至今,大气CO2浓度在低浓度背景之下长周期缓慢下降。当前尚不清楚何种机制主导了这一变化过程,也不清楚形成大陆冰川的水来自何方。为此,从青藏高原深部碳循环、表层水循环和环境变化的角度探讨这些问题,再分析未来人类巨量碳排放之后果。青藏高原在生长、隆升过程中,通过硅酸岩化学风化、植物光合作用、陆内俯冲(深埋)、水岩反应等方式,持续将巨量大气CO2转化为富含碳元素的固、流体,封存在青藏高原新生的厚地壳之中,大幅降低了大气CO2浓度,导致了全球变冷、大陆内陆(含青藏高原,下同)表层失水变干,形成了大陆冰川。渐新世—中新世之交,青藏高原生长到改变大气环流的规模,形成了亚洲季风,大陆内陆进一步荒漠化,捕获CO2的量大幅下降,并与青藏高原内部所释放CO2的量达到了准动态平衡,这是中新世以来大气CO2浓度变化的主要机制。人类巨量碳排放彻底扭转了大气CO2浓度长周期缓慢下降的趋势,大陆冰川因全球变暖所形成的液态水不会长期停留在海洋里,而以大气降水的方式重新回到干冷的大陆内陆,青藏高原将因此再次成为巨型水塔,缓解30多亿人的清洁饮用水问题。持续生长的高原和当前干冷荒漠化的大陆内陆通过前述多种方式固化人类排放的巨量CO2,导致未来大气CO2浓度在较高浓度背景下保持稳定,届时沙漠变绿洲,黄土高原变成有机质丰富的黑土高原,人居环境大幅改善; 但在盆地内部,PM2.5难以扩散,易形成雾霾。全球平均海平面因海水热膨胀而缓慢上升,上升速率约为1 mm/a。水主要在大陆冰川与内陆表层之间循环,与海平面升降之间没有因果关系。因此,人类巨量碳排放所导致的全球变暖对于人类自身的发展是利大于弊。  相似文献   

4.
人类活动造成的CO2排放是全球气候变暖面临的主要挑战之一。CO2封存有望成为全世界减少碳排放份额最大的单项技术。海洋碳捕获、利用和封存(OCCUS)可以在较短时间内提供最大的碳封存能力,与其他地质封存方法相比更加安全有效。而且,多相态形式的CO2(气态、液态、固态和水合物)可以在海洋纵深尺度上实现直接注入。海洋碳封存是一项发展潜力巨大、优势明显的新兴碳封存技术,是实现大规模碳减排的重要措施之一,具有广阔的应用前景。因此,笔者等系统地阐述了海洋CO2直接注入、封存(OCS)的基本原理、技术现状、监测与评估,以及环境方面的影响,并对高效CO2注入技术,CO2泄漏的检测、防范与补救技术,以及海洋碳封存的生态后效等方面进行了展望。  相似文献   

5.
碳捕集与封存(Carbon Capture and Storage,CCS)技术作为缓解全球气候变暖、减少CO2排放的有效路径之一,其潜力评估至关重要。目前CCS技术主要包括CO2强化石油(天然气)开采封存技术、CO2驱替煤层气封存技术以及咸水层CO2封存技术3类。各类封存技术利用了不同的封存机制,其潜力评估方法也略有差别。油气藏封存和咸水层封存主要利用了构造圈闭储存、束缚空间储存、溶解储存、矿化储存等封存机制,煤层气封存主要利用了吸附封存机制。国内外学者和机构针对各类封存技术提出了相应的计算方法,依据其计算原理可归纳为4类: 物质平衡封存量计算法、有效容积封存量计算法、溶解机制封存量计算法以及考虑多种捕获机制的综合封存量计算法。通过对各类经典方法及其计算原理进行综述,剖析潜力封存量计算方法的内涵原理和应用场景,分析了CO2地质封存潜力评价方法在实际应用中面临的问题,有助于提升我国的CCS潜力评价质量。  相似文献   

6.
硅酸盐风化与全球碳循 环研究回顾及新进展   总被引:4,自引:0,他引:4  
硅酸盐风化是大气CO2 的一个主要汇,直接影响到全球碳循环进而影响全球气候。自Walker 等(1981)进行的开创 工作以来,有关“硅酸盐风化- 碳循环- 气候变化”方面的研究大量涌现。从计算机模型到河流水化学研究,从流域面积 超过百万平方公里的大河到数十数百平方公里的单岩性小河流,取得了很多重要的进展。从全球尺度上看,硅酸盐风化每 年所消耗的大气CO2 量为0.138~0.169 Gt,相比现在大气碳库中碳的含量(约800 Gt),乍看似乎是微不足道的,然而硅酸盐 风化消耗CO2 并将其作为碳酸盐矿物埋藏在海洋,它的存留时间超过了百万年。因此,在地质时间尺度上,硅酸盐风化是 调节全球碳循环的一个重要机制。对小流域进行的研究发现,热带地区流经玄武岩/蛇绿岩的小流域有着最高的硅酸盐风化 和大气CO2 消耗速率,热带区域火山岩化学风化消耗的大气CO2 占全球硅酸盐风化所消耗量的10%,而流域面积不到1%。  相似文献   

7.
海上二氧化碳(CO2)地质封存是中国应对滨海地区温室气体排放的重要举措,是实现“碳达峰、碳中和”目标不可或缺的关键技术。中国沿海地区工业发达、碳源丰富,近海盆地具有良好的储盖层物性和圈闭特征,封存潜力巨大,目前中国首个海上CO2地质封存示范工程已在南海珠江口盆地正式启动。CO2监测作为CCUS技术的重要组成部分,贯穿CO2地质封存的全生命周期,是确保封存工程安全性和合理性的必要手段。然而,中国海上CO2地质封存技术处于起步阶段,海上监测任务颇具挑战。文章回顾了国际上海上CO2地质封存的相关代表性研究工作以及示范项目案例,对监测指标、技术、监测方案等进行分析,提出海上CO2地质封存监测技术筛选优化方法和监测建议,旨在为中国海上CO2地质封存示范项目的开展提供参考依据。  相似文献   

8.
<正>大陆岩石化学风化作为大洋可容元素的主要来源,在大洋生物-地球化学循环中起着至关重要的作用,硅酸盐岩化学风化通过调节大气CO2浓度而稳定着全球气候变化[1]。大陆硅酸盐岩化学风化受到岩性、构背景以及气候因素的多重控制,但硅酸盐岩化学风化是全球碳循环过程中的一种负反馈作用,还是气候变化的驱动者?两者之间的相互作用机制仍然存在很大争议,研究大陆硅酸盐岩化学风化对过去气候变化的响应过程是解决这些争议的关键[2-3]。然而,受到风化产物物源、搬运过程,沉积环境变化的多重影响,  相似文献   

9.
火山岩的矿物固碳作用为减少大气中的二氧化碳(CO2)提供了一种永久性的封存解决方案,是一种经济、安全的碳捕集封存(CCS)方式。中国火山岩分布广泛,但对火山岩固碳潜力的研究还很欠缺。文章选择广东省雷州半岛火山岩为研究区,利用MapGis软件,建立雷州半岛火山岩厚度分布的矢量地理信息数据库,插值得到三维网格化数据体;基于火山岩矿化封存机制和CO2矿化封存潜力评估方法,对雷州半岛火山岩CO2理论矿化封存潜力进行了计算。结果表明,雷州半岛火山岩总面积约3940 km2,总体积约257 km3,CO2理论矿化封存量在19~459亿吨之间。其中以雷南火山岩区潜力最大,理论封存量为13~326亿吨;其次为雷北遂溪县以东、湛江市西部区域的火山岩区,理论封存量为2~56亿吨;东海岛区域火山岩,理论矿化封存量虽然不大(1.5~35亿吨),但因其与周边工业排放源较近,具有较好的源汇匹配条件,具备CCS潜力。研究结果不仅对于优选封存CO2火山岩储集区带提供重要依据,同时为未来开...  相似文献   

10.
二氧化碳地质封存是实现减排增汇的重要技术选择,能够将CO2长期、安全地封存在地下岩层中。常规的CO2封存地质体包括地下深部咸水层和枯竭油气藏,玄武岩是近年来逐渐受关注的新一类CO2封存地质体,进一步丰富和拓展了CO2地质封存的技术手段和碳汇潜力。封存潜力评估是CO2地质封存技术发展的重要基础工作之一,文章系统梳理国内外玄武岩矿化封存潜力的评价方法,对比分析各类方法的原理机制和应用情景,并以冰岛活动裂谷带玄武岩为例应用、对比各类方法。研究认为目前玄武岩矿化封存潜力评估方法一般包括三类:(1)单位矿化法:基于玄武岩单位体积或单位反应面积的固碳量开展潜力评估;(2)矿物置换法:基于玄武岩中可固碳矿物的总量开展封存潜力评估;(3)孔隙充填法:基于CO2矿化后产生次生矿物所占岩石孔隙体积比例的上限值开展封存潜力评估。单位矿化法的评估数据需进行系统的实验分析,增加了潜力评估的难度。当玄武岩储层孔隙度较大、可固碳矿物含量相对较小时,矿物置换法较为合适;反之,孔隙充填法更...  相似文献   

11.
鄂尔多斯盆地JX井延长组砂岩固碳潜力分析   总被引:1,自引:1,他引:0  
神华集团在我国CO2地下埋藏的潜在目标区(鄂尔多斯盆地)实施的CO2注入工程仍存在有关其注入层之上泥岩盖层安全性方面的争议.通过对与神华集团CO2注入井相邻且钻遇地层系统、岩石组合一致的JX井三叠系延长组(位于注入层之上)的研究预测一旦CO2透过盖层后的再续固碳能力.研究层位岩屑样品类型主要为长石砂岩和岩屑长石砂岩,其次为岩屑砂岩和岩屑石英砂岩;其物源区岩石类型主要为长英质火山岩、其次为中性火山岩及少量富含石英的沉积岩,具中性斜长岩成分特征;其上段(466~534 m)及下段(666~958 m)砂岩母岩受到弱-中等化学蚀变,并可能经历了再旋回过程;中段(534~666 m)砂岩母岩未受化学蚀变影响,并可能为第一次旋回沉积物.作为潜在的CO2再续固碳场所,延长组砂岩具有实现CO2矿物圈闭的物质条件及形成片钠铝石、方解石、铁白云石和菱铁矿等固碳矿物的潜力.  相似文献   

12.
玄武岩封存CO2为碳捕集与封存(CCS)提供了一种新的具有潜在意义的选择。当今世界上已有三个示范工程案例,即日本Nagaoka、美国Wallula和冰岛Carbfix,这些实例初步证实了CO2玄武岩封存的技术和经济可行性。玄武岩封存CO2相关技术研究进展包括:(1)Carbfix项目采用水溶液替代胺溶剂来捕集烟气中的CO2气体,以便同时对CO2和其他可溶于水的气体进行捕获,而在排放点源只需简单加装水洗塔等设备作为气体分离装置;(2)冰岛提出了适用于CO2饱和溶液注入与封存的Carbfix方法,设计出能分别注入气体和水溶液的专用系统;(3)Carbfix在注入与封存CO2过程中首次采用示踪元素监测方法,并通过质量平衡方法定量估算注入CO2发生碳酸盐化的百分比,发现往玄武岩里注入CO2不到2年就有95%被完全矿化。今后仍需进一步研究的技术问题包括:(1)CO2饱和溶液与超临界CO2两种注入形式如何选择;(2)能否用海水替代淡水溶解CO2;(3)如何提高地球化学模拟的准确性;(4)如何降低碳捕集、分离和运输环节成本。相关探讨对我国利用基性超基性岩进行CO2封存具有一定借鉴意义。  相似文献   

13.
CO2驱油技术在50年代出现并发展至今,作为油田内部主要采收方式,CO2驱油技术逐渐替代了原有的热力采油方式。CO2驱油技术由于发展较早、技术完善、气源成本低,使油田内部对CO2驱油技术的使用范围不断扩大。我国对CO2驱油技术的使用时间较晚,自90年代后才引进了CO2驱油技术,并进行实验。《化学驱提高石油采收率》通过论述化学驱提高石油采收率的原理、方法与应用、技术和矿场应用原则,为相关工作的开展提供参考。  相似文献   

14.
青藏高原化学风化和对大气CO2的消耗通量   总被引:1,自引:0,他引:1  
为了评估青藏高原化学风化对全球气候的影响,笔者等对中国境内源自青藏高原的七条主要河流(金沙江、澜沧江、怒江、黄河、雅砻江、岷江和大渡河)进行了采样和地球化学分析,估算了硅酸盐、碳酸盐风化对河水中主量离子的贡献,以及硅酸盐风化和碳酸盐风化所消耗的大气CO2。研究显示,七条河流流域中硅酸盐风化引起的大气CO2消耗约为0.7×10^5~3.7×10^5mol/(km^2·a)。结合国外学者对于喜马拉雅山南缘三条河流(恒河、布拉马普特拉河和印度河)的研究结果可以得出,发源于喜马拉雅山-青藏高原的主要十条河流流域硅酸盐风化平均共消耗大气CO2328×10^9mol/a,仅占全球大陆硅酸盐岩风化所消耗大气CO28700×10^9mol/a的3.8%,并仅为全球通过河流向海洋输送有机碳(来自陆地上生物的消耗)通量的2.5%。  相似文献   

15.
长期以来针对CO2-ECBM已做了大量研究工作,然而有限的工业试验没能达到预期目的,使得这一煤层气强化技术推广应用欠缺。近些年随着各国碳中和路线的制定,CO2封存逐渐受到重视,煤储层可否作为CO2的封存空间、可否实现CO2驱替CH4和封存同步进行,又重新回归人们的视野。为此,以新疆准南区块目标煤层样为研究对象,采用不同CO2与CH4混合比例气体进行煤的吸附/解吸实验,探索混合气体比例对CO2-ECBM和CO2吸附封存潜力的影响。结果表明,随着混合气体CO2比例减少,CH4驱替效果降低,其中40%CH4+60%CO2混合气体的CO2残余量最多,在解吸至0.7 MPa时已有83.05%的CH4产出,而83.62%的CO2吸附残余在煤中,表明其C...  相似文献   

16.
二氧化碳地质封存联合深部咸水开采技术(CO2-EWR)被认为是有效的碳减排途径之一。在新疆准东地区率先开展CO2-EWR技术,可在实现CO2减排的同时获得咸水,在一定程度上缓解当地的水资源短缺问题,取得环境经济双重效益。以往研究大多以概化模型为主,缺乏工程实践依托,根据准噶尔盆地东部CO2源汇匹配适宜性评价结果,基于我国首个CO2-EWR野外先导性工程试验场地资料,构建拟选CO2-EWR场地西山窑组三维(3D)非均质模型开展了场地尺度CO2-EWR技术潜力研究。研究表明,拟选场地CO2理论封存量为1.72×106(P50)t,动态封存量为2.14×106 t。采用CO2-EWR技术可实现CO2动态封存量11.18×106 t,较单独CO2地质封存提升5.22倍,同时可增采咸水资源10.17×106 t,CO2采水比率为1∶0.91。同时,该技术可有效缓解因CO2大量注入引起的储层压力累积,提高CO2封存效率,增加咸水开采潜力。本研究可为新疆准东地区实施规模化CO2地质封存联合深部咸水开采工程提供理论依据和技术支撑。  相似文献   

17.
硅酸盐岩通过与二氧化碳的化学反应,去除大气二氧化碳并将其封存在风化产物或海洋碳酸盐岩中,是影响全球碳循环以及气候变化的要素之一。定量计算全球硅酸盐岩通过风化作用消耗的二氧化碳总量是了解地球现今与过去气候变化的关键。作者系统调研了5个硅酸盐岩化学风化—二氧化碳消耗定量模型的数据来源、研究方法、计算公式以及各模型的主要影响因素,并且以最新的Celine模型所计算得出的二氧化碳消耗量为参考标准,对比了各模型的优缺点与适用范围。现有模型估计全球硅酸盐岩化学风化的二氧化碳消耗量为69~169 Tg/yr,其中各模型的主要参数包括气候(温度、径流)与岩性,次要参数包括构造隆升、火山与植物作用等。在未来探索硅酸盐岩化学风化所消耗二氧化碳的定量计算中,应考虑更多控制作用的影响以及各因素之间的相互联系。此外,利用大数据分析方法将这些定量模型推广应用于深时地球古气候重建可能是未来的研究趋势。  相似文献   

18.
超基性岩可通过碳酸盐化生成稳定的碳酸盐矿物,它是一种以地球化学手段有效且永久封存CO2的矿物。在自然界中矿物封存CO2可通过风化作用自发发生,人工干预能进一步提升碳酸盐化反应效率,促进工业化进程。笔者基于最新1∶100万西北地质图及数据库,试图对西北地区分布的超基性岩的封存潜力进行理论评估。结果表明,西北地区超基性岩封存CO2量可达963.23亿t,其中新疆超基性岩CO2封存量最大,可达613.52亿t,占西北地区总封存量的63.69%。西北地区超基性岩封存CO2量大致相当于全国2021年CO2排放量的10倍,在完全释放其固碳潜力的情况下,初步静态估算可封存全国CO2排放量约10年。因此,西北地区超基性岩封存CO2潜力巨大。未来,应针对单个超基性岩体收集已有大比例尺精细基础地质调查数据,并补充性开展调查及研究工作,进一步圈定CO2地质封存的有利靶区,促进超基性岩封存CO2  相似文献   

19.
在中国已知最好的苔藓植物化石产地之一河北蔚县, 采集了大量中侏罗世的苔藓植物化石, 选取了3种保存较好的数十块苔类植物化石进行实验室分析处理, 测定了它们的碳同位素组成, 并计算出Δ13C, 运用国际学术界古大气CO2浓度的最新研究成果, 即通过地质学、植物学、植物生理学、地球化学和概率统计学的多学科交叉研究, 利用苔藓植物化石有机碳同位素判别这一全新指标和重建古大气二氧化碳的模型——BRYOCARB, 恢复出中侏罗世的古大气CO2浓度约为705(BRYOCARBNP)或566(BRYOCARBP)μmol/mol, 结果表明苔藓植物化石是恢复地质历史时期大气CO2浓度变化的有效新指标.   相似文献   

20.
典型电厂海洋CO2地质储存场地选址适宜性评估   总被引:1,自引:0,他引:1  
我国华东和东部沿海地区分布有大量的火电、水泥和炼油等CO2排放源,但由于距离陆域大中型沉积盆地较远,限制了规模化的深部咸水层CO2地质储存工程选址。本文以华能玉环电厂为实例,开展了东海陆架盆地瓯江凹陷场地选址适宜性评估。通过瓯江凹陷CO2地质储存地质条件分析,初步圈定出了发育有利储盖层的目标靶区,并依次开展了地质安全性和经济适宜性分析。利用碳封存领导人论坛潜力评估公式,计算了目标靶区推荐储层的单位面积储存潜力;并在构建综合储集条件、地质安全性条件和经济适宜性条件的指标体系基础上,开展了GIS多源信息叠加评估,在丽水西次凹内筛选出两处较好的场地。研究对开展该区海域CO2地质储存选址具有一定的探索意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号