共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond crystallization has been studied in the SiO2–H2O–С, Mg2SiO4–H2O–С and H2O–С subsystems at 7.5 GPa and 1,600°C. We found that dissolution of initial graphite is followed by spontaneous nucleation
of diamond and growth of diamond on seed crystals. In 15-h runs, the degree of graphite to diamond transformation [α = MDm/(MDm + MGr)100, where MDm is mass of obtained diamond and MGr mass of residual graphite] reached 100% in H2O-rich fluids but was only 35–50% in water-saturated silicate melts. In 40-h runs, an abrupt decrease of α has been established
at the weight ratio H2O/(H2O + SiO2) ≤ 0.16 or H2O/(H2O + Mg2SiO4) ≤ 0.15. Our results indicate that α is a function of the concentration of water, which controls both the kinetics of diamond
nucleation and the intensity of carbon mass transfer in the systems. The most favorable conditions for diamond crystallization
in the mantle silicate environment at reliable PT-parameters occur in the fluid phase with low concentration of silicates
solute. In H2O-poor silicate melts diamond formation is questionable. 相似文献
2.
3.
Diamond crystallization from carbon solutions in compositionally variable melts of model eclogite with dolomite [CaMg(CO3)2], potassium carbonate (K2CO3), and multicomponent K-Na-Ca-Mg-Fe carbonates was studied at 7.0–8.5 GPa. Concentration barriers for the nucleation of the diamond were determined at a standard pressure of 8.5 GPa for variable proportions of silicate and carbonate components in the growth solutions. They correspond to 35, 65, and 40 wt % of silicate components for systems with dolomite, K2CO3, and carbonatites, respectively. At higher contents of silicates in silicate-carbonate melts, the nucleation of diamond phase ceases, but diamond crystallization on seed crystals continues and is accompanied by the spontaneous crystallization of thermodynamically unstable graphite. In melts of the albite (NaAlSi3O8)-K2CO3-C compositions, the concentration barrier of diamond nucleation at 8.5 GPa is up to 90–92 wt % of the albite component, and diamond growth on seeds was observed in albite-carbon melts. Using mineralogical and experimental data, we developed a model of mantle carbonate-silicate (carbonatite) melts as the main parental media for natural diamonds; it was shown that the composition of the silicate constituent of such parental melts is variable and corresponds to the mantle ultrabasic-basic series. With respect to concentration contributions and dominant role in the genesis of diamond in the Earth’s mantle, major (carbonate and silicate) and minor or admixture components were distinguished. The latter include both soluble in carbonate-silicate melts (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble components (sulfides, metals, and carbides). Both major and minor components may affect the position of the concentration barriers of diamond nucleation in natural parent media. 相似文献
4.
5.
Sonja Aulbach Steven B. Shirey Thomas Stachel Steven Creighton Karlis Muehlenbachs Jeff W. Harris 《Contributions to Mineralogy and Petrology》2009,157(4):525-540
Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur. 相似文献
6.
7.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation. 相似文献
8.
Interaction of Titanium Minerals and Their Melts with Diamond-Forming Media (Experiments at 7–8 GPa)
Melting relations in the multicomponent diamond-forming systems of the upper mantle with a boundary of K–Na–Mg–Fe–Ca carbonate, phases of the model peridotite and eclogite, carbon, and titanium minerals from kimberlite (ilmenite FeTiO3, perovskite CaTiO3, and rutile TiO2) were studied experimentally at 7–8 GPa and 1600–1650°C. Perovskite reacts with the formation of rutile in the diamond-forming silicate–carbonate melts. We discovered liquid immiscibility between melts of titanium minerals, on the one hand, and carbonate–carbon, peridotite–carbonate–carbon, and eclogite–carbonate–carbon diamond-forming melts, on the other. The solubility of titanium mineral in diamond-forming melts is negligible independent of their concentration in the experimental systems. Growth melts retain high diamond-forming efficiency. In general, the experimental results are evident for the xenogenic nature of titanium minerals in inclusions in diamond and, therefore, in diamond-forming melts. It is shown that the physicochemical factors that may correlate the diamond content with the concentration of Ti in kimberlite do not occur during the diamond genesis in silicate–carbonate–carbon parental melts containing titanium minerals and their melts. 相似文献
9.
In the absence of an externally applied stress, the segregation of small amounts of granitic or tonalitic melts from their
residual mafic crystals is possible only if the melt forms an interconnected network phase. Accordingly, this research focuses
on melt connectivity at low melt fraction (<4 wt% or 5 vol.%). Connectivity of granitic and tonalitic melts in amphibole-rich
rock was assessed by performing two types of piston-cylinder experiments at 1 GPa and 800 °C. The first involved annealing
samples that consisted of either alternating layers or homogeneous mixtures of calcic amphibole and metaluminous obsidian
powder. The second type of experiment involved creating diffusion couples. Here, an upper cylinder of amphibole-saturated
granitic or tonalitic melt was placed against a lower cylinder consisting of an amphibole-rich rock containing zero or a small
melt (granitic or tonalitic) fraction. The upper part of the diffusion couple was doped with β emitter (151Sm or 14C) and functioned as an infinite melt reservoir. The lower part of the diffusion couple was considered to be the host rock.
The experiments approached textural equilibrium which allowed us to characterize the wetting behaviour of the calcic amphibole
by the hydrous silicic melt (granitic or tonalitic). These particular experiments also provided information concerning diffusive
transport, because the β emitter could diffuse through the connected melt (liquid) in the amphibole-rich rock. The dihedral
angle measurements show that melt connectivity was achieved. This conclusion is based on the fact that the dihedral angles,
θ, consistently yielded median apparent values of 53°<θ<58° for an amphibole-rich rock/granitic melt system, and 46°<θ<48°
for an amphibole-rich rock/tonalitic melt system. However, the frequency distribution of θ angles is found to be relatively
broad. The results of the diffusion-couple experiments, assessed using the β radiographic technique, complement the dihedral
(wetting) angle measurements by showing that melt connectivity is achieved at a melt fraction less than 4wt% (5 vol.%).
Received: 15 April 1997 / Accepted: 23 September 1998 相似文献
10.
Experiments on MORB?+?4 wt% H2O at 0.8–2.8 GPa and 700–950 °C (Liu in High pressure phase equilibria involving the amphibolite–eclogite transformation. PhD dissertation, Stanford University, Stanford, California, 1997; Liu et al. in Earth Planet Sci Lett 143:161–171, 1996) were reexamined for their major and trace element melt compositions and melting relations. Degree of melting diminishes at greater pressures, with corresponding evolution of melt from andesitic at the lowest pressures and hottest temperatures to high-silica rhyolitic at the greatest pressure and coolest temperature. Quartz contributes greatly to the production of near-solidus melts of basaltic eclogite, with the result that melt productivity falls markedly following quartz exhaustion. This limits the extent of melting attainable in the basaltic eclogite portions of sub-arc subducting plates to no more than ~?2?×?the modal wt% quartz in the mafic eclogite protolith. Synthesized residual mineral assemblages lack an epidote-series mineral at temperatures?>?750 °C, and as a result, melts from the rutile eclogite and rutile-amphibole eclogite facies have elevated concentrations of light rare earth elements, U, Th, have elevated Ba, K, and Sr, high Sr/Y, and are strongly depleted in Nb, Y, and the heavy rare earth elements. Models of eclogite partial melt reacting with peridotite of the mantle wedge reproduce major and trace element characteristics of parental arc magmas so long as the proportions of infiltrating melt to peridotite are relatively high, consistent with channelized ascent. Melt mass is estimated to increase roughly three- to ten-fold, consistent with H2O concentrations of 3–7 wt% in the magmas produced by reaction. Partial melts of subducting basaltic eclogite are predicted to have positive Sr concentration anomalies, relative to Ce and Nd, that persist through melt-peridotite reactions. Primitive arc magmas commonly have positive Sr anomalies, whereas such anomalies are smaller in estimates of the bulk continental crust. Overall, Sr anomalies diminish passing from primitive to more evolved arc volcanic rocks, consistent with extensive mineral-melt differentiation (crystallization, partial remelting) involving plagioclase. On the order of 50 wt% differentiation would be necessary to eliminate Sr positive anomalies, based on geochemical variations in the Cascade and western Aleutian magmatic arcs. Loss to the mantle of cumulates and restites with high Sr anomalies, in abundances broadly equal to the mass of the preserved crust, would be required to form the continents via processes similar to present-day subduction magmatism. 相似文献
11.
The Guelb Moghrein copper–gold deposit in the Islamic Republic of Mauritania reopened in 2006 and has produced copper concentrate and gold since then. The deposit is hosted in Neoarchaean–Palaeoproterozoic Fe–Mg carbonate-dominated metamorphic rocks interpreted as carbonate-facies iron formation. It forms tabular orebodies controlled by shear zones in the hanging wall and footwall of this meta-iron formation. Copper and gold are hosted in a complex sulfide ore in tectonic breccia replacing Fe–Mg carbonate and magnetite. Hydrothermal monazite dates the mineralization at 2492 ± 9 Ma. Two types of aqueous fluid inclusions suggest fluid mixing at 0.75–1.80 kbar and ~ 410 °C as the mineralization and precipitation mechanism, which is temporally coincident with regional retrograde metamorphism at 410 ± 30 °C (garnet-biotite). Distal alteration zones are enriched in K, Rb and Cu, whereas orebodies are depleted in K, Rb, Sr and Ba. The copper–gold mineralization at Guelb Moghrein formed during retrograde shearing in metamorphic rocks and contemporaneous hydrothermal alteration. The stable isotope signature of alteration and ore minerals suggest an external crustal fluid source. Fluids were focused in the reactive and competent meta-iron formation. Potassium alteration, magnetite and copper–gold mineralization suggest an IOCG mineral system akin similar deposits in Australia and Brazil. 相似文献
12.
Strontium isotopes (87Sr/86Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water–rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems. 相似文献
13.
Phase relations are studied experimentally in the harzburgite–hydrous carbonate melt system, the bulk composition of which represents primary kimberlite. Experiments were carried out at 5.5 and 7.5 GPa, 1200–1350°С, and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) = 0.39–0.57, and lasted 60 hours. It is established that olivine–orthopyroxene–garnet–magnesite–melt assemblage is stable within the entire range of the studied parameters. With increase of temperature and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) in the system, Ca# in the melt and the olivine fraction in the peridotite matrix significantly decrease. The composition of silicate phases in run products is close to those of high-temperature mantle peridotite. Analysis of obtained data suggest that magnesite at the base of subcontinental lithosphere could be derived by metasomatic alteration of peridotite by asthenospheric hydrous carbonate melts. The process is possible in the temperature range typical of heat flux of 40–45 mW/m2, which corresponds to the conditions of formation of the deepest peridotite xenoliths. Crystallization of magnesite during interaction with peridotite matrix can be considered as experimentally substantiated mechanism of CO2 accumulation in subcratonic lithosphere. 相似文献
14.
A. G. Sokol A. A. Tomilenko T. A. Bul’bak G. A. Palyanova Yu. N. Palyanov N. V. Sobolev 《Doklady Earth Sciences》2017,474(2):680-683
The composition of a reduced C–O–H fluid was studied by the method of chromatography–mass spectrometry under the conditions of 6.3 GPa, 1300–1400°C, and fO2 typical of the base of the subcratonic lithosphere. Fluids containing water (4.4–96.3 rel. %), methane (37.6–0.06 rel. %), and variable concentrations of ethane, propane, and butane were obtained in experiments. With increasing fO2, the proportion of the CH4/C2H6 peak areas on chromatograms first increases and then decreases, whereas the CH4/C3H8 and CH4/C4H10 ratios continually decrease. The new data show that ethane and heavier HCs may be more stable to oxidation, than previously thought. Therefore, when reduced fluids pass the “redox-front,” carbon is not completely released from the fluid and may be involved in diamond formation. 相似文献
15.
E. A. Sirotkina A. V. Bobrov A. A. Kargal’tsev Yu. A. Ignat’ev A. A. Kadik 《Geochemistry International》2016,54(7):584-593
Crystallization of garnet in high-chromium restite formed under the conditions of partial melting in the spinel facies and subsequently subducted into the garnet depth facies was studied experimentally in the MgO–Al2O3–Cr2O3–SiO2 system. The crystallization of garnet and the dependence of its composition on the temperature and bulk composition of the system with low Al concentration were studied as well. Experiments in the knorringite–majorite–pyrope system with 5, 10, and 20 mol % Prp were carried out at 7 GPa. The phase associations for the starting composition of pure knorringite Mg3Cr2Si3O12 included chromiumbearing enstatite MgSiO3 (up to 3.2 wt % Cr2O3) and eskolaite Cr2O3. Addition of Al resulted in crystallization of high-chromium majoritic garnet. The portion of garnet in the samples always exceeded the concentration of pyrope in the starting composition owing to the formation of the complex majorite–knorringite–pyrope series of solid solutions. With increasing content of pyrope (from 5 to 20 mol %) and increasing temperature, the modal concentration of garnet increased significantly (from 6–12 to 22–37%). The garnet was characterized by high concentrations of the pyrope (23–80 mol %) and knorringite (22–70 mol %) components. The excess of Si (>3 f.u.) with decreasing Cr concentration provided evidence for the contribution of the majorite–knorringite trend to the variation in garnet composition. On the basis of the natural data, most of the garnets composing xenoliths of ultrabasic rocks in kimberlites and occurring as inclusions in diamonds are low-chromium; i.e., their protolith was not subjected to partial melting, at least in the spinel depth facies. 相似文献
16.
17.
Victor Kress Lori E. Greene Matthew D. Ortiz Luke Mioduszewski 《Contributions to Mineralogy and Petrology》2008,156(6):785-797
We present the results of a series of density experiments in the system O–S–Fe–Ni–Cu. These experiments were designed to extend
our understanding of the physical properties of sulfide liquids, and to extend one-bar thermochemical models for sulfide liquids
to apply to low to moderate pressures. Density measurements indicate both positive and negative deviations from linear mixing
of partial molar volumes across this five-dimensional composition space. In terms of the homogeneous speciation model of Kress
(in Contrib Mineral Petrol 154:191–204, 2007), the best fit to experimental data can be achieved by starting with a model
where the volume of formation reaction for associated species initially is set to zero. Further refinement of this first-order
fit yields a volume mixing model which reproduces experimental data to within nearly the estimated experimental uncertainty.
Experimental ultrasonic and X-ray absorption data from the literature, along with the bulk modulus–volume relation of Anderson
and Nafe (J Geophys Res 16:3951–3963, 1965), allow the estimation of the pressure dependence of partial molar volumes for
sulfide liquid species. The resulting combined thermochemical model should be valid to about 2,000 K and 3 GPa. Application
of this thermochemical model in a simple adiabatic magma ascent scenario confirms earlier work suggesting that the pressure
dependence of sulfur solubility in sulfide-saturated magma will decrease with increasing pressure along geologically reasonable
paths in P–T–– space. 相似文献
18.
I.V. Gas’kov Tran Tuan Anh Tran Trong Hoa Pham Thi Dung P.A. Nevol’ko Pham Ngoc Can 《Russian Geology and Geophysics》2012,53(5):442-456
The Sin Quyen Cu–Fe–Au–REE deposit is localized in the Proterozoic deposits of the Phan Xi Pang zone, northern Vietnam. The mineralization is formed by lenticular and sheet-like bodies occurring concordantly with the host rocks. Seventeen orebodies have been recognized in the deposit, which form an ore horizon up to 140 m in total thickness, about 2 km in strike, and up to 350 m in dip. The ores are of simple mineral composition: Au-rich copper and iron sulfides (chalcopyrite, pyrite, pyrrhotite) and iron oxides (magnetite, hematite). Gold and silver are distributed unevenly in the ores: Their contents vary from hundredths and tenths of ppm to 1.8 ppm. Copper sulfide ores are the main concentrator of gold and silver. All ores are characterized by high REE contents, tens and hundreds of times exceeding the element clarkes. The highest contents have been revealed for Ce and La. Orthite is the main carrier of REE. No correlation between REE and ore elements of sulfide-oxide ores has been revealed, which points to the independent formation of the mineralization. Orebodies together with the host rocks underwent metamorphism at 500–600 to 630–685 °C and 3–7 kbar. The spatial association of the mineralization with amphibolites (metamorphosed basites) and the mineral composition of ores suggest that the Sin Quyen deposit is of Cyprian volcanogenic type. 相似文献
19.
Xi Liu Michael E. Fleet Sean R. Shieh Qiang He 《Physics and Chemistry of Minerals》2011,38(5):397-406
Lead bromapatite [Pb10(PO4)6Br2] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal
X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO4 tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a
diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from
that of lead fluorapatite. The pressure–volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K
T
) of 49.8(16) GPa and first pressure derivative (KT¢ K_{T}^{\prime } ) of 10.1(10). If KT¢ K_{T}^{\prime } is fixed at 4, the derived K
T
is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about
two times the relative difference of the bulk moduli (~5%) of the calcium apatites fluorapatite [Ca10(PO4)6F2], chlorapatite [Ca10(PO4)6Cl2] and hydroxylapatite [Ca10(PO4)6(OH)2]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle
axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite. 相似文献
20.