首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract— An oxide layer adjacent to the surface of the Hoba Ni-Fe meteorite was analyzed chemically and mineralogically. Maghemite, magnetite, goethite and lepidocrocite were the main Fe minerals found in the oxide layer surrounding Hoba. Most of the Ni from the unweathered original meteorite was distributed among the above minerals with spinel-type oxides (maghemite and magnetite) having the largest Ni fraction. Some Ni migrated to the limestone in which the meteorite is embedded. No evidence for zaratite or akaganeite was found in the oxide layer. Sulfate derived from the oxidation of troilite precipitated as gypsum. Phosphate accumulation in limestone in contact with the meteorite is probably due to phosphate adsorbed on Fe-oxides. Maghemite with some magnetite was the oxidation product immediately next to the meteorite metal surface, which accommodated most of the Ni and Fe from the meteorite into its structure. Upon oxidation, some of the Ni, which was incorporated into calcite, was released. Cobalt associated with the oxides stayed within the oxide structure regardless of the oxidation state and did not migrate to the limestone. This suggests that Co may be a good tracer for oxides of meteoritic origin.  相似文献   

2.
Abstract. Some very small particles of metal, revealed by polishing a chunk of Wolf Creek meteoritic iron oxide, appear to consist entirely of moderately shocked kamacite. The apparent lack of surviving taenite tentatively suggests that the Wolf Creek crater was formed by a hexahedrite, although medium octahedrites have recently been found within 4000 meters of the crater. Macrosegregation of nickel within the Wolf Creek meteoroid could account for the discrepancy. Further research on surviving metal is indicated.  相似文献   

3.
One hundred metallic particles from Apollo 16 soils (61181, 65701) and rocks (60018, 60315, 66055) have been investigated microscopically and by electron microprobe analysis. Their cobalt content indicates a meteoritic origin for all but one particle. However, most contain more phosphorus than typical meteoritic metal, possibly due to the reduction of phosphates in the lunar rocks. Compositions of coexisting kamacite and schreibersite indicate temperatures of about 550–650°C which are thought to have occurred during metamorphism. The bulk nickel content of the lunar metal is somewhat low by comparison with most iron meteorites or the metallic component of common stony meteorites. However, this may be due to compositional changes that occurred after emplacement in the lunar surface layer.  相似文献   

4.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   

5.
Abstract– Although iron isotopes are increasingly used for meteorites studies, no attempt has been made to evaluate the effect of terrestrial weathering on this isotopic tracer. We have thus conducted a petrographic, chemical, and iron isotopic study of equilibrated ordinary chondrites (OC) recovered from hot Moroccan and Algerian Saharan deserts environment. As previously noticed, we observe that terrestrial desertic weathering is characterized by the oxidation of Fe‐Ni metal (Fe0), sulfide and Fe2+ occurring in olivine and pyroxene. It produces Fe‐oxides and oxyhydroxides that partially replace metal, sulfide grains and also fill fractures. The bulk chemical compositions of the ordinary chondrites studied show a strong Sr and Ba enrichment and a S depletion during weathering. Bulk meteoritic iron isotope compositions are well correlated with the degree of weathering and S, Sr, and Ba contents. Most weathered chondrites display the heaviest isotopic composition, by up to 0.1‰, which is of similar magnitude to the isotopic variations resulting from meteorite parent bodies’ formation and evolution. This is probably due to the release of isotopically light Fe2+ to waters on the Earth’s surface. Hence, when subtle Fe isotopic effects have to be studied in chondrites, meteorites with weathering grade above W2 should be avoided.  相似文献   

6.
Tiny refractory metal nuggets are mainly observed inside Ca, Al‐rich inclusions (CAIs) from chondritic meteorites and are commonly assumed to be condensates from a solar composition gas. However, recent detailed studies of metal nugget compositions and their comparison with predictions from condensation show that the observed abundance patterns are extremely difficult to achieve in this way. As a test for the proposed alternative, precipitation from a silicate liquid, we conducted melting experiments, in which nine different refractory metals (nugget components) were equilibrated with each other along with a CAI‐like liquid at reducing conditions. When quenched, minerals similar to those in CAIs formed from such liquids including refractory metal nuggets exhibiting compositions and appearances similar to those of the meteoritic nuggets. The run products and their comparison with a meteoritic nugget‐bearing CAI is evidence for formation of refractory metal nuggets during cooling of Ca, Al‐rich liquids at rates about 1000°/40 s (in the interval from 1900 to 900 °C). To achieve the formation of refractory metal nuggets and the textures observed in the host inclusions, during cooling the rate probably changed. Refractory metal nuggets apparently formed during quenching before spinel crystallized.  相似文献   

7.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

8.
Compositional data analysis was performed on chemical compositions of martian surface materials in order to unravel scenarios of past and present weathering and to evaluate the role of meteoritic accumulation. The observed chemical variability is analyzed by means of principal component analysis. Potential reservoirs that may have contributed primary material to soil formation are assessed. Chemical alteration in the course of in situ weathering is described in terms of alteration vectors that link the compositions of fresh rocks and their weathering crusts. The interplay of localized chemical alteration and global scale re-distribution and mixing of fines material is documented through the identification of different soil forming branches. These branches emanate from distinct compositional domains, which comprise basaltic and basalt-andesitic primary materials, and they converge to a global dust composition, which represents the product of chemical and physical disintegration and subsequent global mixing. Mass balance considerations applied to localized weathering phenomena are in line with findings from experimental acid-sulfate weathering on olivine-bearing basalts and the persistence of secondary silica in evaporitic rocks. In addition the composition and oxidation state of involved volcanic gases is deduced. Our findings corroborate the past activity of volcanic exhalation products in combination with liquid water. We conclude that average martian crust is dominated by basaltic materials at its topmost level and that the amount of meteoritic accumulation may contribute about 6 wt% to the martian fines. From the meteoritic contribution minimum soil formation rates of 60±20 cm/Gyr are derived. Sequestration of atmospheric oxygen during weathering of primary materials may account for the oxygen deficiency of the martian atmosphere. A 4-14-m-thick layer of oxidized martian fines may account for the estimated deficit of 1.7×1018 mol O2 in the martian atmosphere depending on the primary oxidation state of volatile volcanic emanations.  相似文献   

9.
The internal strain due to the tidal force in the proximity of a tide-generating body (in the present case, the Moon) is calculated according to the Lord Kelvin theory of Earth tides. The conditions for which uniform elastic sphere possessing a definite tensile strength is crushed near the surface of the Moon is investigated. The state of internal stress is almost independent of the value of elastic constants. Many lunar features, such as twin craters, craterous walled plains of irregular forms, compound craters, may be explained by fission of the meteoritic material before impact.  相似文献   

10.
Abstract— We report on studies of the Fe, Ca, and K atom densities in the trails of meteors. The measurements of the densities were taken simultaneously and in a common volume by three ground-based lidars. We report and analyze the data obtained during two nights of Leonid showers (1996 and 1998 November 16/17) and of one night five days after the 1998 Leonids. The lidar-observed trails of Leonids differ from those of other meteor showers in both their mean altitude and in mean metal composition. The Leonid trails show a highly depressed Ca/Fe abundance ratio in comparison to CI meteoritic composition. Our observations are interpreted with the help of a numerical model that describes the ablation processes occurring during the high-speed entry of meteoroids into the Earth's atmosphere. We conclude that for the lidar-observed meteoroids, the ablation process occurs differentially for the three elements. This leads to a mixture of metals in the meteor trails, the composition of which is strongly altitude dependent and at any one altitude deviates significantly from a CI meteoritic composition. The model predicts differing altitudes and durations of trail observations for different showers, allowing us to tentatively assign the origin to the observed trails.  相似文献   

11.
During the Pliocene–Pleistocene epoch, covering last ∼5.2 Ma of Earth’s history, altogether 34 terrestrial meteoritic impact craters are known. Most of these craters (29) have diameter ≤10 km, among which 11 craters fall in 1,000 to 100 m range, and 7 are still smaller in dimension and of recent age. The age versus impact-frequency plot shows that the meteoritic impacts during this time period occurred in discrete intervals but have a periodicity that shows the best possible coincidence with the ∼425 Ky climatic cycles observed by Fourier analysis and FFT filtering of composite high resolution benthic foraminiferal δ18O record. This observation is also supported by Monte Carlo test with 71% success where meteoritic impact(s) shows coincidence with climatic cooling within our error limit. The newly observed climatic–meteoritic cycle may be same with the ∼400 Ky Milankovitch cycle or it is a different newly understood cycle relating both the climatic variation and meteoritic impact events.  相似文献   

12.
Abstract— We have evaluated various mechanisms proposed for the formation of the Widmanstätten pattern in iron meteorites and propose a new mechanism for low P meteoritic metal. These mechanisms can also be used to explain how the metallic microstructures developed in chondrites and stony‐iron meteorites. The Widmanstätten pattern in high P iron meteorites forms when meteorites enter the three‐phase field α + γ + Ph via cooling from the γ + Ph field. The Widmanstätten pattern in low P iron meteorites forms either at a temperature below the (α + γ)/(α + γ + Ph) boundary or by the decomposition of martensite below the martensite start temperature. The reaction γ → α + γ, which is normally assumed to control the formation of the Widmanstätten pattern, is not applicable to the metal in meteorites. The formation of the Widmanstätten pattern in the vast majority of low P iron meteorites (which belong to chemical groups IAB‐IIICD, IIIAB, and IVA) is controlled by mechanisms involving the formation of martensite α2. We propose that the Widmanstätten structure in these meteorites forms by the reaction γ → α2 + γ → α + γ, in which α2 decomposes to the equilibrium α and γ phases during the cooling process. To determine the cooling rate of an individual iron meteorite, the appropriate formation mechanism for the Widmanstätten pattern must first be established. Depending on the Ni and P content of the meteorite, the kamacite nucleation temperature can be determined from either the (γ + Ph)/(α + γ + Ph) boundary, the (α + γ)/(α + γ + Ph) boundary, or the Ms temperature. With the introduction of these three mechanisms and the specific phase boundaries and the temperatures where transformations occur, it is no longer necessary to invoke arbitrary amounts of under‐cooling in the calculation of the cooling rate. We conclude that martensite decomposition via the reactions γ → α2 → α + γ and γ → α2 + γ → α + γ are responsible for the formation of plessite in irons and the metal phases of mesosiderites, chondrites, and pallasites. The hexahedrites (low P members of chemical group IIAB) formed by the massive transformation through the reaction γ → αm → α at relatively high temperature in the two‐phase α + γ region of the Fe‐Ni‐P phase diagram near the α/(α + γ) phase boundary.  相似文献   

13.
14.
Abstract— Libyan Desert Glass (LDG) is an enigmatic type of glass that occurs in western Egypt in the Libyan Desert. Fairly convincing evidence exists to show that it formed by impact, although the source crater is currently unknown. Some rare samples present dark‐colored streaks with variable amounts of Fe, and they are supposed to contain a meteoritic component. We have studied the iron local environment in an LDG sample by means of Fe K‐edge highresolution X‐ray absorption near edge structure (XANES) spectroscopy to obtain quantitative data on the Fe oxidation state and coordination number in both the Fe‐poor matrix and Fe‐rich layers. The pre‐edge peak of the high‐resolution XANES spectra of the sample studied displays small but reproducible variations between Fe‐poor matrix and Fe‐rich layers, which is indicative of significant changes in the Fe oxidation state and coordination number. Comparison with previously obtained data for a very low‐Fe sample shows that, while iron is virtually all trivalent and in tetrahedral coordination ([4]Fe3+) in the low‐Fe sample, the sample containing the Fe‐rich layers display a mixture of tetra‐coordinated trivalent iron ([4]Fe3+) and penta‐coordinated divalent iron ([5]Fe2+), with the Fe in the Fe‐rich layer being more reduced than the matrix. From these data, we conclude the following: a) the significant differences in the Fe oxidation state between LDG and tektites, together with the wide intra‐sample variations in the Fe‐oxidation state, confirm that LDG is an impact glass and not a tektite‐like glass; b) the higher Fe content, coupled with the more reduced state of the Fe, in the Fe‐rich layers suggests that some or most of the Fe in these layers may be directly derived from the meteoritic projectile and that it is not of terrestrial origin.  相似文献   

15.
The author carried out a study of pulverised cosmic matter extracted from the soil at the fall locality of the Sikhote Alin iron meteorite shower. Three forms of dust were distinguishable: meteoritic, sharp-angled, irregular particles from the break-up of the meteorite; meteoric, spherical, magnetic particles from ablation; and micro meteorites. Meteoritic and meteoric dust was also discovered in the soil of the regions of fall of the Boguslavka and Yardymly iron meteorites. Experiments made by the author for the purpose of obtaining artificial meteoric dust from meteoritic matter of various types have shown that the meteoric dust obtained from stony meteorites is composed of spherules similar to those extracted from the soil in the areas of fall of the Sikhote Alin, Boguslavka and Yardymly iron meteorites. Cosmic dust, the particles of which are usually called micrometeorites, due to their small size, are not subjected to the influence of temperature as they pass through the Earth's atmosphere and they reach the Earth's surface unaltered. It is proposed that meteoric and cosmic dust comprises the largest part of the cosmic matter falling onto the Earth:  相似文献   

16.
Abstract– We report bulk and olivine compositions in 66 stony cosmic spherules (Na2O < 0.76 wt%), 200–800 μm in size, from the Transantarctic Mountains, Antarctica. In porphyritic cosmic spherules, relict olivines that survived atmospheric entry heating are always Ni‐poor and similar in composition to the olivines in carbonaceous or unequilibrated ordinary chondrites (18 spherules), and equilibrated ordinary chondrites (one spherule). This is consistent with selective survival of high temperature, Mg‐rich olivines during atmospheric entry. Olivines that crystallized from the melts produced during atmospheric entry have NiO contents that increase with increasing NiO in the bulk spherule, and that range from values similar to those observed in chondritic olivines (NiO generally <0.5 wt%) to values characteristic of olivines in meteoritic ablation spheres (NiO > 2 wt%). Thus, NiO content in olivine cannot be used alone to distinguish meteoritic ablation spheres from cosmic spherules, and the volatile element contents have to be considered. We propose that the variation in NiO contents in cosmic spherules and their olivines is the result of variable content of Fe, Ni metal in the precursor. NiO contents in olivines and in cosmic spherules can thus be used to discuss their parent body. Ni‐poor spherules can be derived from C‐rich and/or metal‐poor precursors, either related to CM, CI, CR chondrites or to chondritic fragments dominated by silicates, regardless of the parent body. Ni‐rich spherules (NiO > 0.7 wt%) that represent 55% of the 47 barred‐olivine spherules we studied, were derived from the melting of C‐poor, metal‐rich precursors, compatible with ordinary chondrite or CO, CV, CK carbonaceous chondrite parentages.  相似文献   

17.
We have conducted an investigation on the effects that the extracts of a non-carbonaceous meteorite could have on the germination and growth of plants and the ability of non-carbonaceous meteoritic resource to serve as nutrient source for young plants of edible types. Selected plants were two dicotyledons (Lycopersicon esculentum and Daucus carota) and one monocotyledon (Zea mays). Solution cultures were developed using seeds, seedlings and seed-embryos. Meteoritic powder was obtained from the Vigirima mesosiderite, which was analyzed by X-ray diffraction and atomic absorption spectrometry (AAS). Results showed that extracts having variable concentrations of meteoritic matter favored an earlier germination in some plant species but the increase of the concentrations produced a decreased germination. However, total germination rate was higher in the presence of meteoritic extracts than in the presence of controls in the all species. A high metabolic yield in the protein synthesis was seen in dicotyledons utilizing Type-A and B extracts having concentrations of 4.16-8.33×103 mg l−1. Phaeophytinization index and chlorophyll a/b ratio, suggesting a negative effect of the heavy metals or acidic ions over the photosynthetic activity when extracts having high meteoritic concentrations were utilized. However, a higher chlorophyll (a) production in comparison to that of chlorophyll (b) was seen in extracts (Type-A and -B) with low concentrations of meteoritic matter. On the other hand, Z. mays seed-embryos growing in extracts (Type-D) having 3.53×104 mg l−1 of meteoritic matter showed a protein production (9.81×10−2 mg protein mg wet wt−1) higher than that observed in seed-embryos coming from extracts having lower concentrations. However, in Murashige medium, the seed-embryos exhibited a enhanced growth and a relatively higher protein production (10.3×10−2 mg protein mg wet wt.−1). Further, chlorophyll (a+b) synthesis was higher in Murashige medium than in meteoritic extracts but chlorophyll a/b ratio was <1 in all extracts and controls. Our results suggest the usefulness of the non-carbonaceous meteoritic resource as a complementary soil component or fertilizers for culture of edible plants in space settlements and mainly for the production of young plants due to the positive metabolic effects on the chlorophyll synthesis, mitochondrial metabolism and cellular division caused by PO43−, Fe2+, Cu2+ and Ca2+ ions. Earlier germination responses obtained in the present experiments demonstrated the possibility to utilize germination chambers in space having wet substrates containing meteoritic-powder solutions to obtain a higher number of seedlings in a minimum degree of time. These results also reveal the biological potential of this non-carbonaceous meteoritic matter for the growth of organisms in the early Earth, Mars, and probably in other planetary bodies beyond our Solar system.  相似文献   

18.
Abstract— This study explores the controls of oxygen fugacity and temperature on the solubilities of Fe, Ni, Co, Mo, and W in natural eucritic liquids to better constrain the formation of eucritic melts. The solubilities of all five elements in molten silicate in equilibrium with FeNiCo‐, FeMo‐, and FeW‐ alloys increase with increasingly oxidizing conditions and decrease with decreasing temperatures. In applying these data to formation scenarios of the eucrite parent body, we find that the siderophile element abundances in eucrites (meteoritic basalts) cannot be explained by a single‐step partialmelting process from a chondritic, metal‐containing source. The Ni content of the partial melt is too high, and the W and Mo contents are too low compared to the abundances in eucritic meteorites. But Fe, Ni, and Co concentrations in eucrites can be modeled by metal‐silicate equilibrium during more or less complete melting of the eucrite parent body with subsequent fractional crystallization of olivine and orthopyroxene. However, the computed values of Mo are still too low and those of W too high when compared with Mo and W abundances in eucritic meteorites. One possibility is that the Mo and W partition coefficients strongly depend on pressure, although the howardite‐eucrite‐diogenite (HED) parent body only had a minimal pressure gradient (maximum interior pressure = 0.1 GPa). Alternatively, sulfides may have played some role in establishing Mo abundances.  相似文献   

19.
Two meteoritic stones weighing roughly 600 and 200 g fell on 14 April 1942 near Parsa, Bihar, India. The meteorite is a high-Fe (EH) enstatite chondrite on the basis of its large abundance of chondrules, its low concentrations of refractory elements, the Si content of its metal (25–30 mg/g), and its enstatite composition Mg0.975Ca0.007Fe0.018. The high contents of Zn, Cd and In suggest that Parsa is petrologic type 4. A unique feature is an irregular nodule of coarse enstatite, several cm long which is chemically different in its Ca and Fe content compared to the matrix. We have increased the elemental concentrations by 10% to allow for terrestrial oxidation and hydration. The revised siderophile and moderately volatile element concentrations fall within the range observed in EH chondrites and mostly outside the range found in EL chondrites. Terrestrial alteration is indicated by the presence of limonite and other hydrated minerals as well as the morphologies revealed by scanning electron microscopy. The 26Al activity is 51 ± 6 dpm/kg consistent with the calculated production rate. Cosmogenic track densities combined with the 21Ne, 38Ar exposure age of 17 Myr indicate 4–10 cm ablation loss, or a preatmospheric mass of about 40 kg.  相似文献   

20.
Ices on satellites in the solar system undergo changes produced by meteoritic bombardment, pressure, and thermal effects. The effect of the meteoritic bombardment on (porous) ices is some densification, but mainly the formation of crystalline H2O polymorphs and the establishment of a rough equilibrium ratio between hexagonal and amorphous forms below 150°K. As a result of the low temperatures, the pressure densification of porous ices is significant only at depths of at least hundreds of meters for large satellites. The densification process is controlled by creep, that is, by slow plastic deformation of the solid matrix for medium porosities and by diffusion for low porosities. The isothermal effect on porous ice is an extremely slow densification process caused by surface and volume diffusion. A thermal gradient leads to migration of pores toward the warmer end and, since the velocity of the pores is proportional to their size, to their clustering. As a result, smaller pores become eliminated and the pore size distribution changes. Quantitative analysis of these effects has been made for ices including the integrodifferential coagulation equation which gives the new pore size distribution and the steepening of the gradient of porosity. For CO2-ice the rates of these effects can be estimated to be several orders of magnitude higher than for H2O-ice. Various physical properties are significantly affected and, in particular, it is concluded that, on a time scale of 108 to 109 years, in satellites with a cold interior the outer icy layers may have become densified while the opposite is true when satellites such as Europa and perhaps Enceladus have an internal source of heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号