首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

2.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

3.
Ma  Yuan  Xie  Ruixiang  Zheng  Xiangming  Huang  GuangLi 《Solar physics》2003,214(2):353-360
Fast pulsation events, corresponding optical activities and correlated events, observed with the acousto-optical spectrograph at the Yunnan Observatory during the 22nd solar cycle, are statistically analyzed in this paper. Some basic characteristics of the pulsation events in the 230–300 MHz range are obtained. In particular, unusual events with narrow bandwidths (10 MHz) and extremely short periods (25–55 ms) pulsation phenomena were observed. The production mechanisms for these rare pulsations are qualitatively discussed.  相似文献   

4.
Power-law spectra of 1–2 GHz narrowband dm-spikes   总被引:3,自引:0,他引:3  
Karlický  Marian  Jiřička  Karel  Sobotka  Michal 《Solar physics》2000,194(1):165-174
Twelve examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transforming of the frequency scales to heights in the solar atmosphere, the indices of the power-law power spectra are determined. The derived power-law indices are scattered in a broad range of values (–0.80––2.85). In some cases they considerably deviate from the previously found value of –5/3. A change of the power-law index above logk2.5 was also found in some cases. In the two longest events the time evolution of their power spectra as well as their indices were studied. While in most parts of the radio spectra the spectral index remains constant, in one part its absolute value increases with the spike intensity increase. Finally, the results, especially the broad range of power-law indices, are briefly discussed.  相似文献   

5.
Spectrum of average flux of the S-component of solar radio emission observed during the peak phase of the present solar cycle has been determined statistically. Daily values of the mean solar flux at 606, 1415, 2695, 4995 and 8800 MHz observed at the Sagamore Hill Solar Radio Observatory have been examined. The superposed epoch method (Chree analysis) has been used for determining the true nature of the S-component at all these frequencies. Spectrum has been obtained after elimination of the basic components at the respective frequencies. The important results obtained from the present statistical investigation are: (1) the basic component increases with frequency, (2) the S-component shows a maximum at 4995 MHz (6 cm), (3) the spectrum is independent of the phase of the 27-day cycle and (4) S-components at all the frequencies have slopes which are both more uniform and higher in the ascending phase than those in the descending phase of the 27-day cycle. In the descending phase slopes increase with frequency.  相似文献   

6.
The He 1083 nm line equivalent width and the 10.7 cm radio flux are employed to model the total solar irradiance corrected for sunspot deficit. A new area dependent photometric sunspot index (APSI) based on sunspot photometry by Steinegger et al. (1990) is used to correct the irradiance data for sunspot deficits. Two periods of time are investigated: firstly, the 1980–1989 period between the maxima of solar cycles 21 and 22; this period is covered by ACRIM I irradiance data. Secondly, the 1978–92 period which includes both maxima; here, the revised Nimbus-7 ERB data are used.For both He 1083 nm and 10.7 cm radio flux irradiance models as well as ACRIM I and ERB irradiance data, the APSI yields an improved fit compared to the one obtained with the standard Photometric Sunspot Index (PSI) which uses a constant bolometric spot contrast. With APSI, the standard deviation calculated from daily values is 0.461 Wm–2 for the period 1980–89 modelling ACRIM I vs. He 1083 nm, as compared to 0.478 when PSI is used, and to 0.531 for the uncorrected ACRIM series. A similar improvement is obtained for the same period modelling ERB vs. He 1083 nm, while there is almost no improvement for the long period.As a general result the models provide a good fit with the spot-deficit.-corrected irradiance only during the period between the maxima. If both maxima are included (period 1978–92) the He 1083 nm and 10.7 cm radio flux models show appreciably larger discrepancies to the irradiances corrected for PSI or APSI.  相似文献   

7.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R , the major axis scattering angle is 0.7 at =6 cm and it varies with heliocentric distance asR –1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized to =20 cm, has a value 20±7 at 5R and varies with heliocentric distance asR –3. Comprison with earlier results suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scales sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are 1 km at 2R and 4 km at 13R . These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

8.
McKeown  M.  Keenan  F.P.  Ramsbottom  C.A.  Bell  K.L.  Ryans  R.S.I.  Reid  R.H.G. 《Solar physics》1999,186(1-2):231-242
Recent calculations of electron and proton impact excitation rates in Nevii are used to calculate theoretical emission line ratios involving both n=0 (2–2) and n=1 (2–3) transitions in the 97–895 Å wavelength range. A comparison of these with existing solar observations, obtained by instruments on rocket flights and on the Skylab mission, reveals generally good agreement between theory and observation. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and implies that the latter may be applied with confidence to the analysis of solar and stellar spectra from current and future satellite missions.  相似文献   

9.
We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position–velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30M, suggested by other observations, our model fixes the masing disk to have inner and outer radii of 270 and 750 AU.  相似文献   

10.
D. L. Croom 《Solar physics》1970,15(2):414-423
The results of 2 1/2 years (July 1967 – December 1969) monitoring of solar radio bursts at 71 GHz ( = 4.2 mm) at the Radio and Space Research Station, Slough are presented. During this period only seven events were positively identified as 71 GHz bursts. One of these events (6 July, 1968) is among the largest solar bursts ever recorded anywhere in the microwave-millimetre wave band (47000 × 10–22Wm–2Hz–1), and the associated magnetic field may possibly have exceeded 7200 G. Another event (27 March, 1969) has demonstrated that bursts at 71 GHz can be both intense (4700 × 10–22Wm–2Hz–1) and complex. On other occasions, the absence of any detectable event at 71 GHz helps to define the high frequency spectrum of the burst, this being an important factor in determining the initial energy distribution of the electrons ejected by the associated flare. On one such occasion (21 March, 1969) the derived energy distribution index is 8, in contrast with the more usual values of 2–4.1969–1970 NCR-OAR Senior Post-Doctoral Research Associate at Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., U.S.A.  相似文献   

11.
In this paper, the observed solar radio pulsations during the bursts at 9.375 GHz are considered to be excited by some plasma instability. Under the condition of the conservation of energy in the wave-particle interaction, the saturation time of plasma instabilities is inversely proportional to the initial radiation intensity, which may explain why the repetition rate of the pulsations is directly proportional to the radio burst flux at 9.375 GHz as well as 15 GHz and 22 GHz. It is also predicted that the energy released in an individual pulse increases with increasing the flux of radio bursts, the modularity of the pulsations decreases with increasing the flux of radio bursts, these predictions are consistent with the statistical results at 9.375 GHz in different events. The energy density of the non-thermal particles in these events is estimated from the properties of pulsation. For the typical values of the ambient plasma density (109 cm–3) and the ratio between the nonthermal and ambient electrons (10–4), the order of magnitude of the energy density and the average energy of the nonthermal electrons is 10–4 erg/cm3 and 10 kev, respectively. It is interesting that there are two branches in a statistical relation between the repetition rate and the radio burst flux in a special event on March 11–17, 1989, which just corresponds to two different orders of magnitude for the quasi-quantized energy released in these five bursts. This result may be explained by the different ratios between the thermal and the nonthermal radiations.  相似文献   

12.
Two examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transformation of the frequency scales to distances in the solar atmosphere, the power spectra analysis of size scales reveals a spectral index of –5/3, resembling that of Kolmogorov spectra of turbulent cascades. The narrowband dm-spikes are interpreted as radio emission from electrons accelerated in MHD cascading waves, probably generated in plasma outflows from magnetic field reconnection.  相似文献   

13.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

14.
Wang  M.  Duan  C.C.  Xie  R.X.  Yan  Y.H. 《Solar physics》2003,212(2):401-406
A group of type III bursts observed with the 2.6–3.8 GHz spectrometer of National Astronomical Observatory of China on 15 April 1998 is analyzed. They have the characteristics of broad bandwidth (>100 MHz), very short durations (<100 ms), high polarization degree (100%), high frequency drift rates (>1 GHz s–1), and fast pulsations (with a period of about 100–200 ms). Their time profiles are also analysed. According to these characteristics, we suggest that these microwave type III bursts may be due to the fundamental plasma emission.  相似文献   

15.
A broadband spectrometer for decimeter and microwave radio bursts   总被引:5,自引:0,他引:5  
Observations of solar microwave bursts with high temporal and spectral resolution have shown interesting fine structures (FSs) of short duration and small bandwidth which are usually superimposed on the smooth continuum. These FSs are very intense (up to 1015 K) and show sometimes a high degree of circular polarization (up to 100%). They are believed to be generated by electron cyclotron maser emission (ECME) in magnetic loops. Another type are the microwave type III bursts, which are drifting microwave FSs, and are probably the signatures of travelling electron beams in the solar atmosphere. The exact emission mechanisms for these phenomena, in particular the source configuration, the plasma parameters and the distribution of radiating electrons are not clear. For a detailed study of these problems new observations of intensity and polarization with high resolution in time and in frequency in decimeter and microwave wavebands are essential. In order to investigate these features in greater detail, spectrometers with high temporal and spectral resolution are being developed by the solar radio astronomy community of China (Beijing Astronomical Observatory (BAO), Purple Mountain Observatory (PMO), Yunnan Astronomical Observatory (YAO), and Nanjing University (NJU)). The frequency range from 0.7 to about 12 GHz is covered by about five spectrometers in frequency ranges of 0.7–1.4 GHz, 1–2 GHz, 2.4–3.6 GHz, 4.9–7.3 GHz, and 8–12 GHz, respectively. The radiospectrometers will form a combined type of swept-frequency and multi-channel receivers. The main characteristics of the solar radio spectrometers are: frequency resolution: 1–10 MHz; temporal resolution: 1–10 ms; sensitivity: better than 2% of the quiet-Sun level. We pay special attention to the sensitivity and the accuracy of polarization. Now, the 1–2 GHz radiospectrometer is being set up. The full system will be set up in 3–4 years.Presented at the CESRA-Workshop on Coronal Magnetic Release at Caputh near Potsdam in May 1994.  相似文献   

16.
The microwave spectrum of solar millisecond spikes   总被引:5,自引:0,他引:5  
M. Stähli  A. Magun 《Solar physics》1986,104(1):117-123
The microwave radiation from solar flares sometimes shows short and intensive spikes which are superimposed on the burst continuum. In order to determine the upper frequency limit of their occurrence and the circular polarization, a statistical analysis has been performed on our digital microwave observations from 3.2 to 92.5 GHz. Additionally, fine structures have been investigated with a fast (5 ms) 32-channel spectrometer at 3.47 GHz. We found that 10% of the bursts show fine structures at 3.2 and 5.2 GHz, whereas none occurred above 8.4 GHz. Most of the observed spikes were very short ( 10 ms) and their bandwidth varied from below 0.5 MHz to more than 200 MHz. Simultaneous observations at two further frequencies showed no coincident spikes at the second and third harmonic. The observations can be explained by the theory of electron cyclotron masering if the observed bandwidths are determined by magnetic field inhomogeneities or if the rise times are independent of the source diameters. The latter would imply source sizes between 50 and 100 km.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

17.
A. Greve 《Solar physics》1977,52(2):423-427
For a representative set of atmospheric and atomic parameters we determine the strengths of solar dielectronic recombination lines originating in ions with Z 6 at frequencies of 70 GHz. We compare the line strengths derived here with those calculated by Berger and Simon (1972) and find that our values for representative ions with Z3 are lower by a factor 102–103, being mainly the result of the inclusion of the electronic pressure broadening. We outline the requirements for the detection of lines, which must establish an upper limit of at least 10-5 for the line to continuum ratio.  相似文献   

18.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,197(1):101-113
We show that within distances from the Sun's surface less than the height of a streamer helmet, each of two neighboring rays of the streamer belt, as they approach the solar surface, bends around the helmet on either side of it. Also, a minimum angular diameter of the rays of d2°–3° remains virtually constant within R=1.2–6.0 R . A density inhomogeneity (`blob') can be produced above the helmet top visible to at least R6 R . In this case the initial velocity of the `blob' increases with solar distance from where it is generated to something like the velocity of the bulk solar wind with which the `blob' is carried away.  相似文献   

19.
A study has been made of the relation of 19 GHz( = 1.58 cm) solar radio bursts to solar proton emission, with particular reference to the usefulness of relatively long duration bursts with intensities exceeding 50% of the quiet Sun flux (or exceeding 350 × 10–22 W m–2 Hz–1) as indicators of the occurrence of proton events during the four years from 1966–69. 76 to 88% of such bursts are directly associated with solar protons and 60 to 85% of the moderate to large proton events in the four year period could have been predicted from these bursts. The complete microwave spectra of the proton events have also been studied, and have been used to extend the results obtained at 19 GHz to other frequencies, particularly in the 5–20 GHz band. The widely used frequency of 2.8 GHz is not the optimum frequency for this purpose since proton events have a minimum of emission in this region. Most of the radio energy of proton events is at frequencies above 10 GHz. The radio spectra of proton events tend to peak at higher frequencies than most non-proton events, the overall range being 5 to 70 GHz, with a median of 10–12 GHz and a mean of 17 GHz.On leave from the Radio and Space Research Station, Slough, England, as 1969–1970 National Research Council-National Academy of Sciences Senior Post-Doctoral Research Associate at AFCRL.  相似文献   

20.
A list of 750 objects has been compiled using the Astrophysical CATalogs Support System (CATS) database, by cross-identifying sources in the IRAS catalogues and the catalogue of the Texas survey at 365 MHz. We have carried out a search for optical counterparts of those objects, where the difference in positions between the two catalogues and the APM is less than 3. One of these sources, IRAS F02044+0957, was observed with the RATAN-600 radio telescope at four frequencies in April 1999. Optical spectroscopy of the components of the system was made with the 2.1-m telescope of the Guillermo Haro Observatory. The radio and optical spectra, the NVSS radio map and the optical and infrared images allow us to conclude that the steep spectrum (=–0-94 ± 0-02) radio source IRAS F02044+0957 is a pair of interacting galaxies, a LINER and a HII galaxy, at z=0.093.Published in Astrofizika, Vol. 48, No. 1, pp. 113–124 (February 2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号