首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between the rate of TEC index (ROTI) and scintillation indices S 4 and σ Φ for low-latitude region is analyzed in this study, using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at the south of Hong Kong for the periods June–August of 2012 and May 2013 and July–December of 2013. The analysis indicates that the correlation coefficient between ROTI and S 4/σ Φ is about 0.6 if data from all GPS satellites are used together. If each individual satellite is considered, the correlation coefficients are above 0.6 on average and sometimes above 0.8. The analysis also shows that the ratio of ROTI and S 4 varies between 1 and 4. The ratio ROTI/σ Φ, varies between 2 and 9. In addition, it is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation relationship with scintillation indices on geomagnetically disturbed days or in solar active months. Moreover, the data observed at low elevation angles have weak correlation between ROTI and scintillation indices. These results demonstrate the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillations.  相似文献   

2.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   

3.
4.
Small-scale irregularities in the background electron density of the ionosphere can cause rapid fluctuations in the amplitude and phase of radio signals passing through it. These rapid fluctuations are known as scintillation and can cause a Global Positioning System (GPS) receiver to lose lock on a signal. This could compromise the integrity of a safety of life system based on GPS, operating in auroral regions. In this paper, the relationship between the loss of lock on GPS signals and ionospheric scintillation in auroral regions is explored. The period from 8 to 14 November 2004 is selected for this study, as it includes both geomagnetically quiet and disturbed conditions. Phase and amplitude scintillation are measured by GPS receivers located at three sites in Northern Scandinavia, and correlated with losses of signal lock in receivers at varying distances from the scintillation receivers. Local multi-path effects are screened out by rejection of low-elevation data from the analysis. The results indicate that losses of lock are more closely related to rapid fluctuations in the phase rather than the amplitude of the received signal. This supports the idea, suggested by Humphreys et al. (2005) (performance of GPS carrier tracking loops during ionospheric scintillations. Proceedings Internationsl Ionospheric Effects Symposium 3–5 May 2005), that a wide loop bandwidth may be preferred for receivers operating at auroral latitudes. Evidence from the Imaging Riometer for Ionospheric Studies (IRIS) appears to suggest that, for this particular storm, precipitation of particles in the D/E regions may be the mechanism that drives the rapid phase fluctuations in the signal.
Robert W. MeggsEmail:
  相似文献   

5.
As GPS is modernizing, there are currently fourteen satellites transmitting L2C civil code and seven satellites transmitting L5 signal. While the GPS observables are subject to several sources of errors, the ionosphere is one of the largest error sources affecting GPS signals. Small irregularities in the electrons density along the GPS radio signal propagation path cause ionospheric scintillation that is characterized by rapid fluctuations in the signal amplitude and phase. The ionospheric scintillation effects are stronger in equatorial and high-latitude geomagnetic latitude regions and occur mainly due to equatorial anomaly and solar storms. Several researchers have analyzed the L2C signal quality since becoming available in December, 2005. We analyze the performance of L2C using GPS data from stations in the equatorial region of Brazil, which is subject of weak, moderate and strong ionospheric scintillation conditions. The GPS data were collected by Septentrio PolaRxS–PRO receivers as part of the CIGALA/CALIBRA network. The analysis was performed as a function of scintillations indexes S4 and Phi60, lock time (time interval in seconds that the carrier phase is tracked continuously without cycle slips), multipath RMS and position variation of precise point positioning solutions. The analysis shows that L2C code solutions are less affected by multipath effects than that of P2 when data are collected under weak ionospheric scintillation effects. In terms of analysis of positions, the kinematic PPP results using L2C instead P2 codes show accuracy improvements up to 33 % in periods of weak or strong ionospheric scintillation. When combining phase and code collected under weak scintillation effects, the results by applying L2C against P2 provide improvement in accuracy up to 59 %. However, for data under strong scintillation effects, the use of L2C for PPP with code and phase does not provide improvements in the positioning accuracy.  相似文献   

6.
Leaf mass per area (LMA), the ratio of leaf dry mass to leaf area, is a trait of central importance to the understanding of plant light capture and carbon gain. It can be estimated from leaf reflectance spectroscopy in the infrared region, by making use of information about the absorption features of dry matter. This study reports on the application of continuous wavelet analysis (CWA) to the estimation of LMA across a wide range of plant species. We compiled a large database of leaf reflectance spectra acquired within the framework of three independent measurement campaigns (ANGERS, LOPEX and PANAMA) and generated a simulated database using the PROSPECT leaf optical properties model. CWA was applied to the measured and simulated databases to extract wavelet features that correlate with LMA. These features were assessed in terms of predictive capability and robustness while transferring predictive models from the simulated database to the measured database. The assessment was also conducted with two existing spectral indices, namely the Normalized Dry Matter Index (NDMI) and the Normalized Difference index for LMA (NDLMA).Five common wavelet features were determined from the two databases, which showed significant correlations with LMA (R2: 0.51–0.82, p < 0.0001). The best robustness (R2 = 0.74, RMSE = 18.97 g/m2 and Bias = 0.12 g/m2) was obtained using a combination of two low-scale features (1639 nm, scale 4) and (2133 nm, scale 5), the first being predominantly important. The transferability of the wavelet-based predictive model to the whole measured database was either better than or comparable to those based on spectral indices. Additionally, only the wavelet-based model showed consistent predictive capabilities among the three measured data sets. In comparison, the models based on spectral indices were sensitive to site-specific data sets. Integrating the NDLMA spectral index and the two robust wavelet features improved the LMA prediction. One of the bands used by this spectral index, 1368 nm, was located in a strong atmospheric water absorption region and replacing it with the next available band (1340 nm) led to lower predictive accuracies. However, the two wavelet features were not affected by data quality in the atmospheric absorption regions and therefore showed potential for canopy-level investigations. The wavelet approach provides a different perspective into spectral responses to LMA variation than the traditional spectral indices and holds greater promise for implementation with airborne or spaceborne imaging spectroscopy data for mapping canopy foliar dry biomass.  相似文献   

7.
A statistical study of the occurrence characteristic of GPS ionospheric scintillation and irregularity in the polar latitude is presented. These measurements were made at Ny-Alesund, Svalbard [78.9°N, 11.9°E; 75.8°N corrected geomagnetic latitude (CGMLat)] and Larsemann Hills, East Antarctica (69.4°S, 76.4°E; 74.6°S CGMLat) during 2007–2008. It is found that the GPS phase scintillation and irregularity activity mainly takes place in the months 10, 11 and 12 at Ny-Alesund, and in the months 5, 6 at Larsemann Hills. The seasonal pattern of phase scintillation with respect to the station indicates that the GPS phase scintillation occurrence is a local winter phenomenon, which shows consistent results with past studies of 250 MHz satellite beacon measurements. The occurrence rates of GPS amplitude scintillation at the two stations are below 1%. A comparison with the interplanetary magnetic field (IMF) B y and B z components shows that the phase scintillation occurrence level is higher during the period from later afternoon to sunset (16–19 h) at Ny-Alesund, and from sunset to pre-midnight (18–23 h) at Larsemann Hills for negative IMF components. The findings seem to indicate that the dependence of scintillation and irregularity occurrence on geomagnetic activity appears to be associated with the magnetic local time (MLT).  相似文献   

8.
对2012年8月至2013年7月太阳活动高年海口地区扩展F和GPS L1频段电离层闪烁进行了发生时间相关性分析。结果表明,该地区的GPS电离层闪烁与扩展F具有较好的相关性,二者发生的相关系数为095.受太阳活动高年低纬电离层不均匀体发展演化特性和设备观测方式的影响,观测到的电离层闪烁起始时间稍早于扩展F。扩展F结束时间比电离层闪烁结束时间有所滞后,分析认为,在低纬电离层不均匀体的消亡阶段,1 km以下中小尺度的不均匀体首先消失。   相似文献   

9.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   

10.
We present a multi-constellation multi-band GNSS software receiver front end based on USRP2, a general purpose radio platform. When integrated with appropriate daughter boards, the USRP2 can be used to collect raw intermediate frequency (IF) data covering the entire GNSS family of signals. In this study, C++ class-based software receiver processing functions were developed to process the IF data for GPS L1, L2C, and L5 and GLONASS L1 and L2 signals collected by the USRP2 front end. The front end performance is evaluated against the outputs of a high end custom front end driven by the same local oscillator and two commercial receivers, all using the same real signal sources. The results show that for GPS signals, the USRP2 front end typically generates carrier-to-noise ratio (C/N 0) at 1–3 and 1–2 dB below that of the high end front end and a NovAtel receiver, respectively. For GLONASS signals, the USRP2 C/N 0 outputs are comparable to those of a Septentrio receiver. The carrier phase noise from the USRP2 outputs is similar to those of the benchmarking devices. These results demonstrate that the USRP2 is a suitable front end for applications, such as ionosphere scintillation studies.  相似文献   

11.
We develop a new approach for cycle slip detection and repair under high ionospheric activity using undifferenced dual-frequency GPS carrier phase observations. A forward and backward moving window averaging (FBMWA) algorithm and a second-order, time-difference phase ionospheric residual (STPIR) algorithm are integrated to jointly detect and repair cycle slips. The FBMWA algorithm is proposed to detect cycle slips from the widelane ambiguity of Melbourne–Wübbena linear combination observable. The FBMWA algorithm has the advantage of reducing the noise level of widelane ambiguities, even if the GPS data are observed under rapid ionospheric variations. Thus, the detection of slips of one cycle becomes possible. The STPIR algorithm can better remove the trend component of ionospheric variations compared to the normally used first-order, time-difference phase ionospheric residual method. The combination of STPIR and FBMWA algorithms can uniquely determine the cycle slips at both GPS L 1 and L 2 frequencies. The proposed approach has been tested using data collected under different levels of ionospheric activities with simulated cycle slips. The results indicate that this approach is effective even under active ionospheric conditions.  相似文献   

12.
J. Kouba 《Journal of Geodesy》2009,83(3-4):199-208
Several sources of a priori meteorological data have been compared for their effects on geodetic results from GPS precise point positioning (PPP). The new global pressure and temperature model (GPT), available at the IERS Conventions web site, provides pressure values that have been used to compute a priori hydrostatic (dry) zenith path delay z h estimates. Both the GPT-derived and a simple height-dependent a priori constant z h performed well for low- and mid-latitude stations. However, due to the actual variations not accounted for by the seasonal GPT model pressure values or the a priori constant z h, GPS height solution errors can sometimes exceed 10 mm, particularly in Polar Regions or with elevation cutoff angles less than 10 degrees. Such height errors are nearly perfectly correlated with local pressure variations so that for most stations they partly (and for solutions with 5-degree elevation angle cutoff almost fully) compensate for the atmospheric loading displacements. Consequently, unlike PPP solutions utilizing a numerical weather model (NWM) or locally measured pressure data for a priori z h, the GPT-based PPP height repeatabilities are better for most stations before rather than after correcting for atmospheric loading. At 5 of the 11 studied stations, for which measured local meteorological data were available, the PPP height errors caused by a priori z h interpolated from gridded Vienna Mapping Function-1 (VMF1) data (from a NWM) were less than 0.5 mm. Height errors due to the global mapping function (GMF) are even larger than those caused by the GPT a priori pressure errors. The GMF height errors are mainly due to the hydrostatic mapping and for the solutions with 10-degree elevation cutoff they are about 50% larger than the GPT a priori errors.  相似文献   

13.
Ionospheric sporadic-E (Es) activity and global morphology were studied using the 50 Hz signal-to-noise ratio amplitude and excess phase measurements from the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS radio occultation (RO) observations. The results are presented for data collected during the last sunspot cycle from mid-2006 to the end of 2017. The FS3/COSMIC generally performed more than 1000 complete E-region GPS RO observations per day, which were used to retrieve normalized L1-band amplitude standard deviation (SDL1) and relative electron density (Ne) profiles successfully. More or less 31% of those observations were identified as Es events based on SDL1 and peak SDL1 altitude criteria. We found that the peak Es-event i values are approximately proportional to the logarithms of the corresponding peak Ne differences. Five major geographical zones were identified, in which the seasonal and diurnal Es occurrence patterns are markedly different. These five zones include the geomagnetic equatorial zone (??5°?<?magnetic latitude (ML)?<?5°), two extended geomagnetic mid-latitude zones (15°?<?ML?<?55°, and ??55°?<?ML < ??15°), and two auroral zones (70°?<?ML, and ML < ??70°). The Es climatology, namely its variations with each identified zone, altitude, season, and local time has been documented.  相似文献   

14.
The merging of a gravimetric quasigeoid model with GPS-levelling data using second-generation wavelets is considered so as to provide better transformation of GPS ellipsoidal heights to normal heights. Since GPS-levelling data are irregular in the space domain and the classical wavelet transform relies on Fourier theory, which is unable to deal with irregular data sets without prior gridding, the classical wavelet transform is not directly applicable to this problem. Instead, second-generation wavelets and their associated lifting scheme, which do not require regularly spaced data, are used to combine gravimetric quasigeoid models and GPS-levelling data over Norway and Australia, and the results are cross-validated. Cross-validation means that GPS-levelling points not used in the merging are used to assess the results, where one point is omitted from the merging and used to test the merged surface, which is repeated for all points in the dataset. The wavelet-based results are also compared to those from least squares collocation (LSC) merging. This comparison shows that the second-generation wavelet method can be used instead of LSC with similar results, but the assumption of stationarity for LSC is not required in the wavelet method. Specifically, it is not necessary to (somewhat arbitrarily) remove trends from the data before applying the wavelet method, as is the case for LSC. It is also shown that the wavelet method is better at decreasing the maximum and minimum differences between the merged geoid and the cross-validating GPS-levelling data.  相似文献   

15.
Stability, which is significantly related to the loop parameters, is an important factor in the traditional GPS tracking loop design. Through the analysis of phase margin values in the discrete GPS PLL tacking loop, we are able to theoretically reveal the relationship between loop stability, equivalent noise bandwidth B n , predetection integration time T, and loop parameters. We calculate the theoretical limitations for B n T, that is, the product of equivalent noise bandwidth multiplied by predetection integration time, for second- and third-order phase-locked loop, respectively. The results are verified by actual data from GPS receivers.  相似文献   

16.
The Global Positioning System (GPS) radio occultation measurements obtained using the TurboRogue GPS receiver on the Danish satellite Ørsted have been processed using the single frequency method. Atmospheric profiles of refractivity and temperature are derived and validated against numerical weather prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF). Results from the Ørsted GPS measurement campaign in February 2000 indicate that the single frequency method can provide retrievals with accuracy comparable to that of using two frequencies. From comparisons between measured dry temperature profiles and corresponding dry temperature profiles derived from ECMWF analysis fields, we find a mean difference of less than 0.5 K and a standard deviation of 2–4 K between 500 and 30 hPa in height. Above 30 hPa the impact of the ionosphere becomes more dominant and more difficult to eliminate using the single frequency method, and the results show degraded accuracy when compared to previous analysis results of occultation data from other missions using the dual frequency method. At latitudes less than 40° (denoted low latitudes), the standard deviation is generally smaller than at latitudes higher than 40° (denoted high latitudes). A small temperature bias is observed centered at 200 hPa for low latitudes and at 300 hPa for high latitudes. This indicates that the ECMWF analyses do not adequately resolve the tropopause temperature minimum. In the lowest part of the troposphere an observed warm bias is thought to be due to erroneous tracking of the GPS signal in cases of atmospheric multipath propagation.  相似文献   

17.
In GPS meteorology, the weighted mean temperature is usually obtained by using a linear function of the surface temperature T s. However, not every GPS station can measure the surface temperature. The current study explores the characteristics of surface temperature and weighted mean temperature based on the global pressure and temperature model (GPT) and the Bevis T mT s relationship (T m =?a?+?bT s). A new global weighted mean temperature (GWMT) model has been built which directly uses three-dimensional coordinates and day of the year to calculate the weighted mean temperature. The data of year 2005–2009 from 135 radiosonde stations provided by the Integrated Global Radiosonde Archive were used to calculate the model coefficients, which have been validated through examples. The result shows that the GWMT model is generally better than the existing liner models in most areas according to the statistic indexes (namely, mean absolute error and root mean square). Then we calculated precipitable water vapor, and the result shows that GWMT model can also yield high precision PWV.  相似文献   

18.
In this study, the multi-resolution Kalman filter (MKF) algorithm, which can handle multi-resolution problems with high computational efficiency, was used to blend two emissivity products: the Global LAnd Surface Satellite (GLASS) (BBE) product and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) narrowband emissivity (NBE) product. The ASTER NBE product was first converted into a BBE product. A new detrending method was used to transfer the BBEs into a process suitable for the MKF. The new detrending method was superior to the two existing methods. Finally, both the de-trended GLASS and ASTER BBE products were incorporated into the MKF framework to obtain the optimal estimation at each scale. Field measurements collected in North America were used to validate the integrated BBEs. Visually, the fusion map showed good continuity, with the exception of the border areas, and the quality of the fusion map was better than that of the original maps. The validation results indicate that the MKF improved the BBE product accuracy at the coarse scale. In addition, the MKF was capable of recovering missing pixels at a finer scale.  相似文献   

19.
Ionospheric disturbances can be detrimental to accuracy and reliability of GNSS positioning. We focus on how ionospheric scintillation induces significant degradation to Precise Point Positioning (PPP) and how to improve the performance of PPP during ionospheric scintillation periods. We briefly describe these problems and give the physical explanation of highly correlated phenomenon of degraded PPP estimates and occurrence of ionospheric scintillation. Three possible reasons can contribute to significant accuracy degradation in the presence of ionospheric scintillation: (a) unexpected loss of lock of tracked satellites which greatly reduces the available observations and considerably weakens the geometry, (b) abnormal blunders which are not properly mitigated by positioning programs, and (c) failure of cycle slip detection algorithms due to the high rate of total electronic content. The latter two reasons are confirmed as the major causes of sudden accuracy degradation by means of a comparative analysis. To reduce their adverse effect on positioning, an improved approach based on a robust iterative Kalman filter is adopted to enhance the PPP performance. Before the data enter the filter, the differential code biases are used for GNSS data quality checking. Any satellite whose C1–P1 and P1–P2 biases exceed 10 and 30 m, respectively, will be rejected. Both the Melbourne–Wubbena and geometry-free combination are used for cycle slip detection. But the thresholds are set more flexibly when ionospheric conditions become unusual. With these steps, most of the outliers and cycle slips can be effectively detected, and a first PPP estimation can be carried out. Furthermore, an iterative PPP estimator is utilized to mitigate the remaining gross errors and cycle slips which will be reflected in the posterior residuals. Further validation tests based on extensive experiments confirm our physical explanation and the new approach. The results show that the improved approach effectively avoids a large number of ambiguity resets which would otherwise be necessary. It reduces the number of re-parameterized phase ambiguities by approximately half, without scarifying the accuracy and reliability of the PPP solution.  相似文献   

20.
一类小波基函数的构造及其在测量数据处理中的应用探讨   总被引:3,自引:2,他引:1  
Shannon函数有很好的滤波性能,但向两端衰减速度缓慢;Gauss“窗”函数有很好的控制小波衰减的特性,但其低通滤波效果较差。根据这两个函数各自的优点构造了一类新的小波基函数,分别为满足低通的父小波和带通的一阶、二阶母小波,讨论了它们的正交性、完备性和紧支集性等性质,以GPS资料为例,分析其信号平滑和压缩效应、边缘效应和奇异点检测,得出一些有益的结论,为大地测量数据处理提供一种小波分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号