首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

2.
OKAY  ARAL I. 《Journal of Petrology》1989,30(1):107-132
A 600 m thick, more than 40 km long slice of eclogite faciesrocks, called the Sug?z? Nappe, occurs in the Alanya area, southernTurkey, sandwiched between two other crystalline nappes whichdo not show HP/LT metamorphism. All three nappcs were affectedby a later Barrovian-type metamorphism and penetrative deformationwhich welded the nappes into a single tectonic unit. The SugOzuNappe consists predominantly of garnet-mica schists with lensesof eclogite and blueschist metabasites. The mineral assemblagein the eclogites, garnet+omphacite+glaucophane+paragonite+quartz+phengite+rutile, is estimated to have formed at 13?5?1?5 kb and510?25?C. The eclogite assemblage is variably overprinted bya later Barrovian metamorphism with the development of barroisite,chlorite, and albite. The extent of the Barrovian overprintwas controlled by the supply of fluid to the rocks. The Barrovian metamorphism increases in grade downwards in thestructural sequence; biotite and garnet isograds are mappedin the lowermost Mahmutlar Nappe, made up mostly of metapelitesand metapsammites. The metapelites in the garnet zone consistof garnet+biotite+chlorite+muscovite+albite+oligoclase+quartz+ilmenite;metamorphic conditions are estimated as 6?5?1?0 kb and 469?13?C. The HP/LT rocks of the Sug?z? Nappe underwent a cooling of about100?C during a dry uplift from a depth of about 48 km to 21km where they were intercalated with the other nappes, and affectedby a Barrovian metamorphism caused by the incoming fluids. Thecase of the Alanya Nappcs illustrates that the Barrovian overprintobserved in many eclogites and blueschists may not be due toincreasing temperature during uplift, but simply due to theintroduction of a fluid phase during part of the uplift P-Tpath.  相似文献   

3.
The Adula Nappe is a slice of Pre-Mesozoic continental basementaffected by Early Alpine (Mesozoic or Lower Tertiary) high-pressuremetamorphism. Mineral compositions in mafic rocks containingomphacite + garnet + quartz record a continuous regional trendof increasing recrystalliza tion temperatures and pressuresthat can be ascribed to this regional high-pressure metamorphicevent. P-T estimates derived from mineral compositions gradefrom about 12 kb and 500 ?C or less in the north of the nappeto more than 20 kb/800 ?C in the south. The regional P-T trend is associated with a mineralogical transitionfrom assemblages containing additional albite and abundant amphiboles,epidote minerals, and white micas in the north (omphacite-garnetamphibolites) to kyanite eclogites containing smaller amountsof hornblende and zoi.site in the south. Textures and mineralcompositional data show that these hydrous and anhydrous silicatesassociated with omphacite + garnet + quartz arc primary partsof the high-pressure assem blages. Observed phase relationsbetween these primary silicates, theoretical Schreinemakersanalysis, and the thermobarometric results, together indicatethat the regional transition from omphacite amphibolites tokyanite eclogites can be described by two simplified reactions: alb+epi+hbl=omp+kya+qtz+par (H2O-conserving) (15) par+epi+hbl+qtz=omp+kya+H2O (dehydration) (12) which have the character of isograd reactions. Local variations of water activity (aH2O) as indicated by isofacialmineral assemblages, and the H2O character of the reaction (15),are interpreted to reflect largely H and predominantly fluid-absenthigh-pressure metamorphism within the northern part of the nappe.The omphacite amphibolites and paragonite eclogites in thisarea are thought to have formed by H2O reactions from Pre-Mesozoichigh-grade amphibolites, i.e. from protoliths of similar bulkH2O-countent. The second ‘isograd’ (12) is interpreted to markthe regional transition from largely fluid-absent metamorphismin the north to fluid-present metamorphism in the south, wheremetamorphic pressures and temperatures in excess of 12-15kband 500-600?C were sufficient for prograde in-situ dehydrationof similar hydrous protoliths to kyanite eclogites. The observationof abundant veins, filled with quartz+kyanite+omphacite, suggeststhat a free fluid coexisted locally with the kyanite eclogitesof the southern Adula Nappe at some time during progressivedehydration.  相似文献   

4.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

5.
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud  相似文献   

6.
The role of water during metamorphism of eclogites and surrounding quartzofeldspathic gneisses in western Norway has been studied. The appearance of small patches and veinlets of hornblende+plagoclae+quartz(+biotite+garnet) is attributed to partial meltiing of gneisses adjacent to eclogite in a high pressure metamorphic terrain (P > 8 kb, T > 600°C, approx.). This melting is responsible for the lowering of PH2O during metamorphism whereby the interlayered mafic were pre- or synmetamorphic mafic intrusions and accumulates which retained an essentially anhydrous character during metamorphism.  相似文献   

7.
Summary Retrograde eclogites and serpentinites from the Hochgr?ssen massif, Styria, are parts of the Speik complex in the Austroalpine basement nappes of the Eastern Alps. They are in tectonic contact with pre-Alpine gneisses, amphibolites, and Permo-Triassic quartz phyllites (Rannach Series). The eclogites are derived from ocean-floor basalts with affinities to mid-ocean ridge and back-arc basin basalts. Fresh eclogites are rare and contain omphacite with a maximum of 39 mol% jadeite content, garnet (Py15–19) and amphibole. Retrograde eclogites consist of amphibole and symplectites of Na-poor clinopyroxene (5–8 mol% Jd) + albite ± amphibole. Amphiboles are classified as edenite, pargasite, tschermakite, magnesiohornblende and actinolite. In relatively fresh eclogite, edenite is a common amphibole and texturally coexists with omphacite and garnet. An average temperature of 700 °C was obtained for eclogite facies metamorphism using garnet-pyroxene thermometry. A minimum pressure of 1.5 GPa is indicated by the maximum jadeite content in omphacite. Thermobarometric calculations using the TWEEQ program for amphibole in textural equilibrium with omphacite and garnet give pressures of 1.8–2.2 GPa at 700 °C. The equilibrium assemblage of Na-poor clinopyroxene, albite, amphibole and zoisite in the symplectites gives a pressure of about 0.6–0.8 GPa at 590–640 °C. 40Ar/39Ar radiometric dating of edenitic amphibole in textural equilibrium with omphacite gave a plateau age of 397.3 ± 7.8 Ma, and probably indicates retrograde cooling through the closure temperature for amphibole (∼500 °C). The age of the high-pressure metamorphism thus must be pre-Variscan and points to one of the earliest metamorphic events in the Austroalpine nappes known to date. Received June 11, 2000; revised version accepted January 2, 2001  相似文献   

8.
High-pressure metamorphism in the Pohorje Mountains of Slovenia (Austroalpine unit, Eastern Alps) affected N-MORB type metabasic and metapelitic lithologies. Thermodynamic calculations and equilibrium phase diagrams of kyanite–phengite-bearing eclogites reveal PT conditions of >2.1 GPa at T<750°C, but within the stability field of quartz. Metapelitic eclogite country rocks contain the assemblage garnet + phengite + kyanite + quartz, for which calculated peak pressure conditions are in good agreement with results obtained from eclogite samples. The eclogites contain a single population of spherical zircon with a low Th/U ratio. Combined constraints on the age of metamorphism come from U/Pb zircon as well as garnet–whole rock and mineral–mineral Sm-Nd analyses from eclogites. A coherent cluster of single zircon analyses yields a 206Pb/238U age of 90.7±1.0 Ma that is in good agreement with results from Sm-Nd garnet–whole rock regression of 90.7±3.9 and 90.1±2.0 Ma (εNd: +8) for two eclogite samples. The agreement between U-Pb and Sm-Nd age data strongly suggests an age of approximately 90 Ma for the pressure peak of the eclogites in the Pohorje Mountains. The presence of garnet, omphacite and quartz inclusions in unfractured zircon indicates high-pressure rather than ultrahigh pressure conditions. The analysed metapelite sample yields a Sm-Nd garnet–whole rock scatterchron age of 97±15 Ma. These data probably support a single P-T loop for mafic and pelitic lithologies of the Pohorje area and a late Cretaceous high-pressure event that affected the entire easternmost Austroalpine basement including the Koralpe and Saualpe eclogite type locality in the course of the complex collision of the Apulian microplate and Europe.  相似文献   

9.
LAPPIN  M. A. 《Journal of Petrology》1974,15(3):567-601
An orthopyroxene eclogite from the Sunndal-Grubse mass containsclinopyroxenes with lamellae of garnet and orthopyroxene. Differencesin mineral and bulk chemistry distinguish this, and adjacenteclogites, from eclogites in other Almklovdalen ultramafic masses.Analyses are used in conjunction with experimental data to assignthree T-P points in the complex T-P path of the ultramafic masses.Other T-P points are assigned on a basis of petrographic andstructural arguments. The inferred T-P path offers support toearlier suggestions that the masses are tectonically controlledintroductions within the surrounding gneisses. The survivalof eclogite facies assemblages within the ultramafic massesis attributed to a gneissic metamorphism where PH2O < PTotal.The T-P path also suggests an extended history of subsolidusre-equilibration under mantle conditions possibly complicatedby open system reactions. The eclogites of the Sunndal-Grubsemass are thought to be cumulates and differentiates of relativelyhigh pressure (25–28 kb) melting in ultramafic rocks.The complex T-P path can be explained in terms of convectioncell mechanisms.  相似文献   

10.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

11.
"罗田穹隆"中的下地壳俯冲成因榴辉岩及其地质意义   总被引:12,自引:0,他引:12  
在“罗田穹隆”中发现了下地壳俯冲成因榴辉岩.榴辉岩呈透镜状或板状产于含石榴子石条带状片麻岩中.新鲜的榴辉岩主要由石榴子石、绿辉石、金红石等组成.含少量退变质的角闪石、斜长石、紫苏辉石、透辉石、(钛)磁铁矿和石英等.研究区榴辉岩以保留早期麻粒岩相变质矿物残留体以及经受晚期麻粒岩相和角闪岩相退变为特征.指示它们由扬子镁铁质下地壳麻粒岩相岩石俯冲到深部发生变质并形成榴辉岩.然后折返至下地壳发生麻粒岩相退变,由于麻粒岩相退变质阶段仅以后成合晶形式出现.因而它们可能在下地壳停留时间不长.就又进一步被构造抬升至中上地壳而发生角闪岩相退变.大别山造山带乃至扬子板块北缘现今缺乏厚层镁铁质下地壳.它们也很少出露地表.推测这些俯冲的镁铁质下地壳可能已拆离再循环进人地幔.从而为“罗田穹隆”的形成和演化以及大别山高压-超高压岩石的形成与折返机制等研究提供了关键性的岩石学证据。  相似文献   

12.
The main hole (MH) of the Chinese Continental Scientific Drilling Project (CCSD) in southern Sulu has penetrated into an ultrahigh-pressure (UHP) metamorphic rock slice which consists of orthogneiss, paragneiss, eclogite, ultramafic rock and minor schist. Recovered eclogites have a UHP metamorphic mineral assemblage of garnet + omphacite + rutile ± phengite ± kyanite ± coesite ± epidote. Ultramafic rocks contain garnet + olivine + clinopyroxene + orthopyroxene ± Ti-clinohumite ± phlogopite. Gneisses and schists contain an amphibolite-facies paragenesis, but their zircons have coesite, garnet, omphacite (or jadeite) and phengite inclusions, indicating that eclogites and gneisses have been subjected to in situ UHP metamorphism. Using available geothermobarometers, P–T estimates of 3.1–4.4 GPa and 678–816°C for eclogites were obtained. If surface outcrops and neighboring shallow drill holes are considered together, we suggest that a huge supracrustal rock slab (> 50 km long × 100 km wide × 5 km deep) was subducted to a depth > 100 km and then exhumed to the surface. The depth interval (0–2,050 m) of the CCSD-MH can be divided into six lithological units. Unit 1 consists of alternating layers of quartz-rich and rutile-rich eclogites, with thin interlayers of gneiss and schist. Eclogites of unit 1 are characterized by Nb, Ta, Sr and Ti depletions, low Mg number and general LREE enrichment. Unit 2 comprises rutile- and ilmenite-rich eclogite and minor “normal” eclogite and is characterized by high TiO2, total Fe, V, Co and Sr, and very low SiO2, alkali, Zr, Ba, Nb, Ta and total REE contents, and LREE-depleted REE patterns with slightly positive Eu anomalies. Unit 3 contains ultramafic rock and minor MgO-rich eclogite. Protoliths of UHP rocks from units 1, 2 and 3 represent a layered mafic to ultramafic intrusion at crustal depth. Units 4 and 6 consist of interlayered eclogite and paragneiss; the eclogites are characterized by Th, U, Nb, Ta and Ti depletion and K enrichment and LREE-enriched REE patterns. Paragneisses show Nb, Ta, Sr and Ti depletions and LREE-enriched REE patterns occasionally with slightly negative Eu anomalies, indicating that their protoliths represent metamorphic supracrustal series. Unit 5 consists mainly of orthogneisses, showing distinct Nb, Ta, Sr and Ti depletions, and LREE-enriched REE patterns with pronounced negative Eu anomalies, suggesting granitic protoliths. In conclusion it is proposed that the southern Sulu UHP belt consists of a series of meta-supracrustal rocks, a layered mafic–ultramafic complex and granites.  相似文献   

13.
Eclogites occur as isolated blocks in melanges of both the Samana Peninsula, Dominican Republic, and the Franciscan Complex, California, USA. In some of these eclogites, fluid inclusions were found in omphacite and sodic-calcic amphibole grains. Textures show that non-planar populations of fluid inclusions formed during growth of clinopyroxene and amphibole. In addition, planar arrays of secondary fluid inclusions are found along healed cracks. Homogenization temperatures to liquid were used to calculate isochores for the fluid inclusions. These data were compared with petrologic geothermobarometry. Temperature conditions of 500–700° C were estimated from garnetclinopyroxene geothermometry. The jadeite contents of omphacite indicate minimum pressures of 8–11 kbar in this temperature range. The P-T estimates agree well with calculated isochores for primary fluid inclusions from the Samana Peninsula, and show some overlap for both primary and secondary fluid inclusions from the Franciscan Complex. Salinities of 1.2–5.3 wt% NaCl equiv. were estimated for both primary and secondary fluid inclusions from Samana and Franciscan eclogites. These data suggest that low-salinity aqueous fluids attended eclogite-facies metamorphism and perhaps retrograde metamorphism in both subduction complexes. The salinities and densities of fluid inclusions in eclogites from the Samana Peninsula and the Franciscan Complex resemble those of counterparts from garnet amphibolites of the Catalina Schist, southern California. An external source for such fluids is suggested by their homogeneous populations coupled with their low salinities. Geologic evidence suggests that the Samana and Franciscan eclogites may have been derived from a Catalina-like source terrane. The Catalina rocks are inferred to have interacted with large volumes of sediment-derived fluid during subduction zone metamorphism at similar P but higher T conditions than those determined for Samana and Franciscan eclogite blocks. These results contrast with data for fluid inclusions from eclogites of the Monviso area, western Alps. The Monviso eclogites yield similar estimates for metamorphic P-T to those obtained in this study, but contain fluid inclusions of brine and of other saline aqueous fluids, all of which are less dense than expected for incorporation at the reported eclogite-facies conditions. The differences between the properties of fluid inclusions from the ecologites and garnet amphibolites of the Samana-Franciscan-Catalina subduction complexes and those of Monviso probably reflect differences between fluid-flow regimes during metamorphism.  相似文献   

14.
南苏鲁造山带的超高压变质岩及岩石化学研究   总被引:10,自引:0,他引:10  
在南苏鲁造山带核部,古老的表壳岩和花岗质侵人岩经历了三叠纪的超高压变质作用,在超高压变质岩石抬升过程中经历了强烈的角闪岩相退变质作用改造。据岩相学和岩石化学研究,可以区分出六大类典型超高压变质岩:榴辉岩、石榴石橄榄岩、石英硬玉岩、石榴石多硅白云母片岩、硬玉石英岩和石榴石绿辉石文石岩。这些岩石的角闪岩相退变质产物分别是斜长角闪岩、蛇纹岩、长英质片麻岩、长石石英云母片岩、石英岩和大理岩。地球化学研究揭示,榴辉岩的原岩很可能是形成在大陆内部构造环境的拉斑玄武岩,而石榴石橄榄岩可能是起源于亏损的残余地幔。石英硬玉岩原岩包括正变质的花岗岩和奥长花岗岩、副变质的酸性火山碎屑岩和长石石英砂岩。大面积分布的古老花岗岩很可能是形成在大陆或大陆边缘环境。长石石英云母片岩、石英岩和大理岩的原岩为沉积岩,与副变质的长英质片麻岩和基性火山岩—起构成了古老的表壳岩组合。双峰式的酸性和基性火山岩组合的存在也证明部分表壳岩是形成在大陆环境。因此,可以推测南苏鲁造山带核部的超高压变质岩原岩为形成在大陆板内环境的沉积岩—酸性和基性火山岩—花岗岩和奥长花岗岩建造。  相似文献   

15.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

16.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

17.
Amphibolites are frequently and characteristically associatedwith alpine-type ultramafics within ophiolite zones of differentgeological ages. Ultramafics of the Dinaridic ophiolite zoneare predominantly lherzolite, and are associated with differentvarieties of gabbro, dolerite, diabase, spilite, and amphibolite.Amphibolites commonly form narrow, interrupted zones aroundlarger ultramafic massifs, and, in some areas, they exceed theultramafics in size. All these rocks are members of the Jurassic(?)volcanic-sedimentary complex (‘Diabas-Hornstein Formation’)consisting predominantly of graywacke type sandstone and shale. The amphibolites characteristically have crystalloblastic texturesand are commonly banded and foliated, which distinguishes themfrom associated gabbros and dolerites. Different kinds and varietiesof metamorphic rocks can be found within the Dinaridic amphibolitecomplexes: amphibolite schists containing plagioclase, pyroxeniteschists containing diopside and plagioclase, monomineralic amphiboleschists, and eclogites. Samples of each of these rock typeswere collected from several localities and monomineralic fractionsof amphiboles, plagioclases, garnets, and clinopyroxenes wereseparated and examined in detail. Amphiboles range from kaersutite, pargasite, and edenite throughtransitional varieties enriched in tschermakite and ‘common’hornblende molecules. Plagioclase varies from anorthite to sodicoligoclase. Associated garnets are enriched either in pyropeor in almandine. Clinopyroxene is hedenbergitic diopside withabout 10–20 per cent of jadeite molecule and hypersthenecontains about 40 per cent FeSiO3. Variations in mineral composition of the amphibolites demonstratestheir metamorphic origin. Although there is a continuous changein chemical composition, three mineral assemblages can be distinguished.Data from experimental petrology indicate that the amphibolitesassociated with alpine-type ultramafics can be stable underupper mantle PT conditions.  相似文献   

18.
大别山产出的榴辉岩相岩石包括石榴橄榄岩、榴辉岩、榴云片岩、榴辉片麻岩、榴玉英岩和榴辉大理岩等不同系列,它们均分布于花岗质片麻岩中。矿物共生序列研究表明,榴辉岩相岩石经历了从绿帘角闪岩相、柯石英榴辉岩相、角闪榴辉岩相、绿帘角闪岩相到绿片岩相的演化过程。花岗质片麻岩及变质火山—沉积岩系并未经历超高压变质作用,但却与榴辉岩相岩石经历了同一期绿帘角闪岩相变质事件,证明二者在地壳范围内发生了构造合并  相似文献   

19.
High-pressure, regional metamorphic rocks (the Raspas Formation)constitute an inclusion more than 10 km long and 3 km wide ina protrusion of extensively serpentinized harzburgite in ElOro Province, southwestern Ecuador. The high-pressure rocks,all feldspar-free, consist of a dominant pelitic schist withquartzite layers, eclogite, eclogite amphibolite, garnetite,and retrograde mafic rocks. The pelitic schist is coarse grainedand is composed of quartz + phengite + paragonite + garnet +chloritoid + rutile + graphite ± kyanite ± pyrite.Eclogite is fine to medium grained, massive to strongly foliated(average mode: omphacite (Jd42Ac6(Di + He)32), 38.2 per cent;garnet (Alm53 Spess2 Pyr19 Gross26), 26.6; barroisite (4.1 percent Na2O), 22.6; clinozoisite, 4.1; rutile, 2.1; quartz, 5.7;other minerals, 0.7).Eclogite amphibolite is a medium-grainedand massive to foliated rock composed of amphibole (3.1 percent Na2O) + garnet + zoisite + kyanite + rutile + pyrite ±omphacite± paragonite ± quartz ± apatite. Retrogrademafic rocks include glaucophane schist, greenschist, and coarse-grained,amphibole-rich rocks. Prograde metamorphism took place in an active Benioff zone.Based on phase relations in the pelitic schist, partitioningof Mg/(Mg + Fetotal + Mn) in garnet-amphibole and in omphacite-amphibolepairs (Dòbretsov et al., 1975), the absence of lawsonite,and other evidence, the conditions of metamorphism are estimatedto have been T = 580 ° ± 20 °C and P total =13 ± 3 kb (43 ± 10 km depth). P H2O ranged from P total in pelitic schist, through P total in eclogite amphibolitc,to «P total in eclogite. Retrograde metamorphism accompaniedrapid uplift of the Raspas Formation during which the rockspassed through the stability field of glaucophane-epidote schist,but not the stability field of lawsonite. The inclusion of high-pressure rocks was carried upward intactin a protrusion of extensively serpentinized harzburgite whichrose diapirically through the relatively denser amphiboliteand greenschist which constitute the regional basement of ElOro Province. Serpentinization of harzburgite began at depth,and continued coevally with eclogitization. Protrusive riseoccurred upon abandonment of the Benioff zone. Radiometric K-Arages on the uplift of the Raspas Formation and the youngestlavas of a volcanic are of Jurassic-Early Cretaceous age ineastern Ecuador are synchronous (132 m.y.). Present address: Département de Géologie, Université Laval, Québec, P. Q. G1K 7P4 Canada  相似文献   

20.
In the southern Adula nappe (Central Alps), two stages of regional metamorphism have affected mafic and pelitic rocks. Earlier eclogite facies with a regional zonation from glaucophane eclogites to kyanite-hornblende eclogites was followed by a Tertiary overprint which varied from greenschist to high-grade amphibolite facies. Despite a common metamorphic history, contrasting equilibration conditions are often recorded by high-pressure mafic eclogite and adjacent predominantly lower-pressure pelite assemblages. This pressure contrast may be explained by different overprinting rates of the two bulk compositions during unloading. The rates are controlled by a mechanism in which dehydrating metapelites provide the H2O required for simultaneous overprinting of enclosed mafic eclogites by hydration.Quantitative mass balance modelling based on corona textures is used to show that overprinting of metapelites during unloading involved dehydration reactions. The relatively rapid rate of dehydration reactions led to nearly complete reequilibration of metapelites to amphibolite facies assemblages.After the formation during high-pressure metamorphism of mafic eclogites, later lower-pressure reequilibration by hydration to amphibolites was slow, and therefore incomplete, because it depended on large scale transport of H2O from adjacent, dehydrating metapelites.The facies contrast observed between rocks of different bulk composition is thus a consequence of the general tendency of metamorphic rocks to retain the most dehydrated assemblage as the final recorded state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号