首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The circulation and zonal wind anomalies in the lower troposphere over the equatorial western Pacific and their roles in the developing and decaying processes of the 1982–1983, 1986 –1987, 1991–1992 and 1997–1998 El Ni?o events and the occurrence of La Ni?a events are analyzed by using the observed data in this paper. The results show that before the developing stage of these El Ni?o events, there were cyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies brought the westerly anomalies over the Indonesia and the tropical western Pacific. However, when the El Ni?o events developed to their mature phase, there were anticyclonic circulation anomalies in the lower troposphere over the tropical western Pacific, and the anomalies made the easterly anomalies appear over the tropical western Pacific. A simple, dynamical model of tropical ocean is used to calculate the response of the equatorial oceanic waves to the observed anomalies of wind stress near the sea surface of the equatorial Pacific during the 1997/98 ENSO cycle, which was the strongest one in the 20th century. It is shown that the zonal wind stress anomalies have an important dynamical effect on the devel-opment and decay of this El Ni?o event and the occurrence of the following La Ni?a event.  相似文献   

3.
Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Ni?o and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation.  相似文献   

4.
将1951~2004年期间的12次El Nino事件分为强、中等、较弱和弱4类,结果发现,强和较弱El Nino衰减进入La Nina,但是中等和弱El Nino衰减进入平常态.因此,El Nino的衰减结果与自身强度之间存在密切的非线性关系.进一步的研究表明,负异常信号自西太平洋向中东太平洋的东传主导了强El Nino事件向La Nina的转变过程,其具体动力过程类似于西太平洋振子理论.热带西北太平洋(WNP)大气异常反气旋在强El Nino位相转变中起核心作用,它的维持和缓慢东移是赤道东风异常维持和发展的原因,而后者通过激发Kelvin波导致了ENSO从El Nino向La Nina的转变.  相似文献   

5.
刘长征  薛峰 《地球物理学报》2010,53(11):2564-2573
在第二部分,我们研究了中等和较弱El Ni?o的衰减过程. 结果表明,对中等El Ni?o而言,在其发展阶段和盛期,负异常信号在西太平洋产生,但由于强度不足,在El Ni?o盛期之后迅速衰减,这是一种夭折的类西太平洋振子过程. 因此,与强El Ni?o不同,中等El Ni?o衰减进入平常态. 而较弱El Ni?o以截然不同的另一种方式进行位相转换,伴随东南太平洋副高的加强和西移,东风异常和海表温度负异常自赤道东太平洋向西扩展,这是一种平流模态过程,导致较弱El Ni?o衰减进入La Nia.  相似文献   

6.
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphereocean coupled model, we conducted two experiments(CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature(SST) modes to the occurrence of El Ni?o events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of El Ni?o events during the boreal autumn in an El Ni?o developing year. However, it weakens El Ni?o events or even promotes cold phase conversions in an El Ni?o decaying year. Therefore, the entire period of the El Ni?o is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the El Ni?o developing years, the positive Indian Ocean Dipole(IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer El Ni?o event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin(IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Ni?o decaying years. As a result, the El Ni?o event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the El Ni?o during the developing years, whereas the IOB mode affects the El Ni?o during the decaying years.  相似文献   

7.
A new ocean reanalysis, covering the period from 1990 to 2009, is evaluated against observational sea surface temperature (SST) and sea surface height (SSH) data in reproducing the temporal characteristics of El Ni?o and El Ni?o Modoki. The new reanalysis assimilates the available SST, temperature–salinity profile, and satellite altimetry data sets into a global ocean model forced with surface boundary conditions from the National Centers for Environmental Prediction atmospheric reanalysis 2. Using the Ni?o 3 index and the improved El Ni?o Modoki index, to distinguish between El Ni?o and El Ni?o Modoki signals, our results show that the two time series in the new reanalysis are in agreement with those obtained from observations during the study period. A composite analysis method is used to demonstrate the temporal evolution of these two types of El Ni?o. The new reanalysis has the advantage of representing the strength and location of El Ni?o events better than the control run, with an increase in the spatial correlation, but El Ni?o variability in the reanalysis is weak in the eastern Pacific, particularly off the coast of South America. As for the El Ni?o Modoki events, the initiation, development, and termination of the warm SST anomalies all occur in the central Pacific. All main features associated with the warm SST anomaly pattern of El Ni?o Modoki are well represented in the reanalysis. Furthermore, using this new ocean reanalysis, we select two strong cases to investigate possible mechanisms that may lead to the different warm SST anomaly patterns.  相似文献   

8.
Abstract

The effect of the El Niño Southern Oscillation (ENSO) on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia, is demonstrated. This research used rainfall data collected between 1978 and 2008. The results suggest a relationship between ENSO events and the trend in rainfall observed in the study area. Further analyses show that El Niño events have a stronger effect on the rainfall compared to La Niña events. El Niño events were also correlated to the increase in the number of days with less than 1 mm of rainfall in the dry season. The analysis reveals that the impact of El Niño events on rainfall in dry seasons is intensifying annually. Furthermore, ENSO events are not the only factors affecting rainfall trends in the observed area. Other factors, such as deforestation, may also affect the trend.

Editor Z.W. Kundzewicz

Citation Susilo, G.E., Yamamoto, K., Imai, T., Ishii, Y., Fukami, H., and Sekine, M., 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal, 58 (3), 539–548.  相似文献   

9.
This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth’s top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5?Wm?2 per decade based upon comparisons between Clouds and the Earth’s Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Ni?o-Southern Oscillation (ENSO). During positive ENSO phase (El Ni?o), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Ni?a). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Ni?a conditions and a net cooling influence during El Ni?o, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden–Julian Oscillation.  相似文献   

10.
This survey evaluated the monthly accumulation rate of marine debris and the types of objects washed ashore at Volunteer Beach on East Falkland between October 2001 and March 2002. The mean (±SD) accumulation rate of marine debris was 77 ± 25 items/km/month, of a mean weight of 17.3 ± 12 kg. Forty different objects were collected and the five most frequent items were cotton fabric, string, polystyrene packing sheet, plastic packing tape and broken plastic pieces. The debris on Volunteer Beach was dominated by fishing debris; 42% of the items were discarded fishing equipment, while 39% of the items were of a packaging or associated nature. The mostly likely source of this household waste was fishing vessels, with Falkland Islands Government (FIG) fisheries observers seeing 27 of the 40 items of debris collected from Volunteer Beach being discarded from fishing vessels. It is suggested that, although further marine debris research is warranted, more effective at-sea ship waste disposal regulations are required in Falkland waters to reduce environmental and economic threats both at the local and international level.  相似文献   

11.
Baseline measurements were made of the amount and weight of beached marine debris on Sand Island, Midway Atoll, June 2008-July 2010. On 23 surveys, 32,696 total debris objects (identifiable items and pieces) were collected; total weight was 740.4 kg. Seventy-two percent of the total was pieces; 91% of the pieces were made of plastic materials. Pieces were composed primarily of polyethylene and polypropylene. Identifiable items were 28% of the total; 88% of the identifiable items were in the fishing/aquaculture/shipping-related and beverage/household products-related categories. Identifiable items were lowest during April-August, while pieces were at their lowest during June-August. Sites facing the North Pacific Gyre received the most debris and proportionately more pieces. More debris tended to be found on Sand Island when the Subtropical Convergence Zone was closer to the Atoll. This information can be used for potential mitigation and to understand the impacts of large-scale events such as the 2011 Japanese tsunami.  相似文献   

12.
厄尔尼诺持续时间与大气环流异常形势   总被引:3,自引:0,他引:3       下载免费PDF全文
针对不同持续时间的El Nio事件,进行了大尺度大气环流及其演变的合成分析研究.其结果清楚地表明,不同持续时间的El Nio事件的发生、发展和消亡过程,对流层低层风场和对流层高层速度势场的距平都有极为显著差异.分析得到了对El Nio事件的发生和消亡起着重要作用的大气环流异常形势.还发现对于持续时间较长的El Nio事件,东北太平洋上850hPa异常气旋性环流减弱和西北太平洋上异常反气旋性环流增强较慢,因此赤道太平洋异常西风维持的时间也较长,而与澳大利亚冬季风加强相关联的南半球西太平洋的速度势正距平的维持,对El Nio的持续也起一定作用;对应持续时间较短的El Nio事件,西太平洋上200hPa速度势正距平的迅速东移,对El Nio的迅速消亡起重要作用.  相似文献   

13.
Drylands account for approximately 41% of the global total land area. Significant warming and rare precipitation in drylands result in a fragile ecology and deterioration of the living environment, making it more sensitive to global climate change. As an important regulator of the Earth's climate system, the oceans play a vital role in the process of climate change in drylands. In modern climate change in particular, the impact of marine activities on climate change in drylands cannot be neglected. This paper reviews the characteristics of climate change in drylands over the past 100 years, and summarizes the researches conducted on the impact of marine activities on these changes. The review focuses on the impact of the Pacific Decadal Oscillation(PDO), Atlantic Multidecadal Oscillation(AMO), El Ni?o and La Ni?a on climate change in drylands, and introduces the mechanisms by which different oceanic oscillation factors synergistically affect climate change in drylands.Studies have shown that global drylands have experienced a significant intensification in warming in the past 100 years, which shows obvious characteristics of interdecadal dry/wet variations. The characteristics of these changes are closely related to the oscillatory factors of the oceanic interdecadal scale. Different phase combinations of oceanic oscillation factors significantly change the land-sea thermal contrast, which in turn affects the westerly jet, planetary wave and blocking frequency, resulting in changes in the temperature and dry/wet characteristics of drylands. With the intensification of climate change in drylands, the impact of marine activities on these regions will reveal new characteristics in the future, which will increase the uncertainty of future climate change in drylands and intensify the impact of these drylands on global climate.  相似文献   

14.
Interannual variability is an important modulator of synoptic and intraseasonal variability in South America. This paper seeks to characterize the main modes of interannual variability of seasonal precipitation and some associated mechanisms. The impact of this variability on the frequency of extreme rainfall events and the possible effect of anthropogenic climate change on this variability are reviewed. The interannual oscillations of the annual total precipitation are mainly due to the variability in austral autumn and summer. While autumn is the dominant rainy season in the northern part of the continent, where the variability is highest (especially in the northeastern part), summer is the rainy season over most of the continent, thanks to a summer monsoon regime. In the monsoon season, the strongest variability occurs near the South Atlantic Convergence Zone (SACZ), which is one of the most important features of the South American monsoon system. In all seasons but summer, the most important source of variability is ENSO (El Ni?o Southern Oscillation), although ENSO shows a great contribution also in summer. The ENSO impact on the frequency of extreme precipitation events is also important in all seasons, being generally even more significant than the influence on seasonal rainfall totals. Climate change associated with increasing emission of greenhouse gases shows potential to impact seasonal amounts of precipitation in South America, but there is still great uncertainty associated with the projected changes, since there is not much agreement among the models’ outputs for most regions in the continent, with the exception of southeastern South America and southern Andes. Climate change can also impact the natural variability modes of seasonal precipitation associated with ENSO.  相似文献   

15.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

16.
In this study, Turkish climatic variables (precipitation, stream flow and maximum and minimum temperatures) were first analysed in association with both the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO). The relationships between Turkish maximum and minimum monthly temperatures and the extreme phases of the SO (El Niño and La Niña events) were examined. The results of this analysis showed that relationships between Turkish monthly maximum temperatures and El Niño and La Niña contain some complexity still to be identified, because both events produce a signal indicating a correspondence with cold anomalies in the aggregate composites. A relationship between turkish minimum temperatures and El Niño was detected in western Anatolia, whereas there was no significant and consistent signal associated with La Niña. Moreover a series of cross‐correlation analyses was carried out to demonstrate the teleconnections between the climatic variables and both the NAO and SO. The NAO during winter was found to influence precipitation and stream‐flow patterns. In contrast temperature patterns appeared to be less sensitive to the NAO. Furthermore, lag‐correlation results indicated a prediction potential for both precipitation and stream‐flow variables in connection with the NAO. Simultaneous and time‐lag correlations between the climatic variables and the SO index, in general, indicated weaker relationships in comparison with those for the NAO. These analyses also showed that the influences of the SO on Turkish temperature data are negligible. The outcomes were presented in conjunction with an explanation regarding physical mechanisms behind the implied teleconnections. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Large amounts of marine debris are present in shallow reefs adjacent to beach haulouts of the critically endangered Hawaiian monk seal, Monachus schauinslandi. These areas serve as seal pup nurseries, and injury and death caused by entanglement in marine debris are undermining population recovery efforts. We investigated the extent of this threat by measuring the accumulation of potentially entangling derelict fishing gear in nursery zones, 1999-2001. Plots of reef 1.0-1.3 km2 at three Northwestern Hawaiian Islands were initially cleaned of derelict fishing gear in 1999 then resurveyed in 2000 and 2001. Submerged debris densities across sites ranged from 16 to 165 debris items/km2. Resurveyed sites yielded annual marine debris accumulation rates from 0 to 141 debris items/km2. This large range was attributed to the physiography of reef areas surveyed. Trawl net webbing was significantly more common than other types of debris recovered and represented 84% of all debris encountered, suggesting that much of the debris originated from distant North Pacific Ocean fisheries. The likely source of most debris is the multinational trawl fisheries of the North Pacific Ocean. An international solution to this problem is needed. Targeted marine debris removal is a short-term, successful, entanglement mitigation strategy.  相似文献   

18.
本文引入3阶主张量分析方法对1993~2008年赤道太平洋地区卫星测高数据进行解析,前两个主张量可有效表征海面变化的经、纬向耦合特征,重构与对比了该时段内6次ENSO事件海面变化的经、纬向演化的空间构型与耦合作用过程.结果表明:海面的经向变化可表征ENSO强度变化,纬向变化表现为受ENSO影响的年周期波动;经、纬向张量...  相似文献   

19.
The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large‐scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long‐term fate of contaminated sediment within the river catchment. Knowledge of the inter‐ and intra‐annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining‐related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those events affect a given catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号