首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We have developed a new spherical harmonic algorithm for the calculation of the loading and self-gravitating equilibrium pole tide. Based on a suggestion of Dahlen, this approach minimizes the distortions in tide height caused by an incomplete representation of the ocean function. With slight modification our approach easily could be used to compute self-gravitating and loading luni-solar tides as well.
Using our algorithm we have compared the static pole tide with tide observations at a variety of locations around the world. We find statistically significant evidence for pole tide enhancements in mid-ocean as well as the shallow seas.
We have also re-investigated the effect of the static tide on the Chandler wobble period. The difference between the wobble period of an oceanless, elastic earth with a fluid core (Smith & Dahlen) and the period of an earth minus static oceans yields a 7.4-day discrepancy. We conclude from tide observations that much of the discrepancy can probably be accounted for by non-equilibrium pole tide behaviour in the deep oceans.  相似文献   

2.
3.
4.
Summary. The pole tide is the response of the ocean to incremental centrifugal forces associated with the Chandler wobble. The tide has a potentially important effect on the period and damping of the wobble, but it is at present not well constrained by observations. Here, we construct both analytical and numerical models for the pole tide. The analytical models consider the tide first in a global ocean and then in an enclosed basin on a beta-plane. The results are found to approach equilibrium linearly with decreasing frequency and inversely with increasing basin depth. The numerical models solve Laplace's tidal equations over the world's oceans using realistic continental boundaries and bottom topography. The results indicate that the effects of the non-equilibrium portion of the deep ocean tide on the Chandler wobble period and damping are negligible.  相似文献   

5.
6.
This report presents an up-to-date review of the British Isles (BI) Mean Sea Level (MSL) data set obtained from tide gauges, and of the long-term secular trends in BI MSL. The data are of mixed quality, and not as copious as one would like for scientific analysis given the complexity of long-term sea and land level changes around BI coasts. Nevertheless, the small number of very long records can be studied effectively, and indicate that twentieth century secular trends in BI MSL are consistent with those obtained from NW Europe as a whole and with the bottom range of estimates for global average MSL change during the past 100 years. Century-timescale low-frequency 'accelerations' in MSL of the order of 0.4–0.8  mm  yr−1  century−1 are obtained from the three longest records, which are also similar to estimates from mainland Europe. 'Sea level indices' for the BI are constructed which can provide responsible agencies with a guide to the 'average state' of BI sea level. Combined ocean tide and storm surge ('tide + surge') numerical modelling is demonstrated to be a valuable tool in understanding part of the variability of MSL around the BI, although modelling of long-term changes is limited at present by the lack of adequate meteorological data sets from before 1955. Nevertheless, it is shown that, even if a complete meteorological modelling data set were available, it would not be able to account for all of the MSL variability. Finally, recommendations are made for the development of tide gauge and Global Positioning System (GPS) recording in the BI for the purpose of long-term MSL monitoring in the next century.  相似文献   

7.
基于非结构三角形网格的FVCOM(Finite-Volume Coastal Ocean Model)海洋数值模式,对白令海峡及其邻近海域的潮汐、潮能进行数值模拟研究。模拟结果同验潮站和实测海流资料符合良好,较好地反映了白令海峡及其邻近海域的潮汐、潮流分布特征和运动状况。根据计算结果绘制了主要分潮的同潮图和潮流椭圆图,对该海域潮汐潮流特征进行了系统分析。结果表明,白令海陆架区、白令海峡和楚科奇海主要以M2分潮为主,而在诺顿湾海域以K1分潮为主,M2分潮潮流在白令海陆架东南部及阿纳德尔湾较强,K1分潮潮流在诺顿湾潮流达到最大值。在此基础上,对其潮汐能的传播与耗散进行分析,结果发现研究海域潮能通量较小,主要分潮在研究海域潮能耗散总量约为751 MW,M2潮能耗散占该总量的52%,K1潮能耗散占38%,潮能进入白令海陆架后,M2分潮主要在圣劳伦斯岛以南陆架区耗散,K1分潮主要在诺顿湾海区耗散。  相似文献   

8.
互花米草盐沼潮沟地貌特征   总被引:18,自引:1,他引:17  
互花米草是我国从国外引进的能在淤泥质潮滩的高潮带下部和中潮带上部生长的禾木科植物,由于其植株高大、群落盖度高、根系发达等生物学特性,其对潮流动力特征有显著的影响。本文通过对江苏省东台市笆斗垦区外互花米草盐沼地的潮沟形态调查,发现互花米草盐沼潮沟具有以下一些特征:潮沟密度大,可达50km/km2以上;潮沟的宽深比小,大多在8以下;沿岸堤发育,且多呈不对称状;一级主潮沟与主潮沟接头处普遍呈逆弧形;盐沼外侧边缘发育有明显的陡坎冲沟。分析认为这些特征主要与互花米草发达的根系和致密的植株等生物学特性有关,发达的根系增加了盐沼滩面的稳定性,而互花米草高大的植株增加了对潮水运动的阻力,提高了滩面落潮水的归槽水位,改变了潮流的泥沙沉积地点和涨、落潮流的流向,从而形成比较特别的互花米草盐沼潮沟特征。  相似文献   

9.
10.
11.
12.
13.
继在南极中山站建成我国南极首个永久性验潮站后,2012年1月在南极长城站又建成了我国南极第二个永久性验潮站。通过对长城站验潮站相关数据进行分析处理,得到了验潮基准系统的水准网平差结果和验潮仪零点标定结果,以及长城站附近海域海洋潮汐170个分潮的调和常数,并据此进行了潮汐预报,同时分析了长城站潮汐余水位的变化特征,探讨了利用附近的Antarctic Base Prat验潮站的余水位改正长城站潮汐预报的可行性,结果表明使用Antarctic Base Prat验潮站余水位改正长城站潮汐预报,可以显著提高长城站验潮站潮汐预报的精度,余水位改正后2014时段的潮汐预报中误差为±3.42 cm,明显好于改正前的预报中误差±10.43 cm。  相似文献   

14.
b
The results are presented from tidal gravity measurements at five sites in Europe using LaCoste and Romberg ET gravimeters. Improvements that we have made to the accuracies of these gravimeters are discussed. It is shown that the 'standard' calibration of the International Center for Earth Tides, used for worldwide tidal gravity profiles, is 1.2 per cent too high. The M2 and O1 observations are compared with model calculations of the Earth's body tide and ocean tide loading and it is shown that there is a very significant improvement in the agreement between observations and models compared to that obtained with previous tidal gravity measurements. For O1, where the ocean tide loading and attraction in central Europe is only 0.4 per cent of the body tide, our measurements verify that the Dehant-Wahr anelastic body tide model gravimetric factor is accurate to 0.2 per cent. It is also shown that the effects of lateral heterogeneities in Earth structure on tidal gravity are too small to explain the large anomalies in previously published tidal gravity amplitudes. The observations clearly show the importance of conserving tidal mass in the Schwiderski ocean tide model. For sites in central Europe, the M2 and O1 observations and the models are in agreement at the 0.1 μgal (10−9 m s−2) level and tidal corrections to this accuracy can now be made to absolute gravity measurements.  相似文献   

15.
《Polar Science》2014,8(1):10-23
This study compares the common harmonic constants of the O1, K1, P1, Q1, M2, S2, N2, and K2 tidal constituents from eight global and four regional tide models with harmonic constants from satellite altimeter and tide gauge data for the northern region of the Antarctic Peninsula (58°S–66°S, 53°W–66°W). To obtain a more representative comparison, the study area was divided into three zones with different physical characteristics but similar maximum tidal amplitude variations: Zone I (north of 62°S), Zone II (south of 62°S and west of the Antarctic Peninsula), and Zone III (between 62°S and 64.3°S, and east of 58.5°W). Root sum square (RSS) values are less than or equal to 3.0, 4.2, and 8.4 cm for zones I, II, and III, respectively. No single model shows superior performance in all zones. Because there are insufficient satellite altimetry observations in the vicinity of Matienzo Base (64.9761°S, 60.0683°W), this station was analyzed separately and presents the greatest values of both root mean square misfit and RSS. The maximum, minimum, and average amplitude values of the constituents that follow in importance after the eight common tidal constituents, and which have amplitudes greater than 1 cm, are also analyzed.  相似文献   

16.
The lunar geomagnetic tide at night   总被引:2,自引:0,他引:2  
  相似文献   

17.
summary . The English Channel is modelled by a simplified geometry which enables a quasi-analytic solution to be obtained for the semidiurnal tide. This solution is then used to calculate the forced components of the quarterdiurnal tide from the non-linear terms in the equations of motion.  相似文献   

18.
19.
The sand dredging and its impacts on riverbed evolution and tidal dynamic change in the lower reaches and delta of the Dongjiang River are examined in this paper. The large amount of sand, totally 3.32 billion m^3 from 1980 to 2002, was mined from the riverbeds of the lower reaches and delta of the Dongjiang River. Increasing of the channel capacity, lowering of the average riverbed elevation, deepening of the water depth and decreasing of the longitudinal riverbed gradient are the main effects on the riverbed evolution brought by the large amount of sand dredging. Under the strong sand dredging and associated significant riverbed deformation, the notable changes of the tidal dynamic in the lower reaches and delta of the Dongjiang River occurred, including: (1)in the upper reaches of the Dongjiang River delta and lower reaches of the Dongjiang River, tidal level dropped apparently, tidal range widened, flood tidal duration became longer, amplitudes for major tidal components became bigger and tidal dynamics intensified; (2) tidal wave spread faster; and (3) the limits of the tidal level, tidal current and salt water moved upstream.  相似文献   

20.
The sand dredging and its impacts on riverbed evolution and tidal dynamic change in the lower reaches and delta of the Dongjiang River are examined in this paper. The large amount of sand, totally 3.32 billion m3 from 1980 to 2002, was mined from the riverbeds of the lower reaches and delta of the Dongjiang River. Increasing of the channel capacity, lowering of the average riverbed elevation, deepening of the water depth and decreasing of the longi-tudinal riverbed gradient are the main effects on the riverbed evolution brought by the large amount of sand dredging. Under the strong sand dredging and associated significant riverbed deformation, the notable changes of the tidal dynamic in the lower reaches and delta of the Dongjiang River occurred, including: (1) in the upper reaches of the Dongjiang River delta and lower reaches of the Dongjiang River, tidal level dropped apparently, tidal range widened, flood tidal duration became longer, amplitudes for major tidal components became bigger and tidal dynamics intensified; (2) tidal wave spread faster; and (3) the limits of the tidal level, tidal current and salt water moved upstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号