首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using 3D gas dynamics, we numerically simulate accretion-disk formation in typical cataclysmic variable intermediate polars with dipolar magnetic fields (B a = 105?5 × 105 G) and misaligned white-dwarf magnetic and rotation axes. Our simulations confirm that a significant misalignment of the axes results in a significant misalignment of the disk to the orbital plane. However, over time, this disk tilt disappears: early in the simulation, the initial particle positions in the rarefied tilted disk are governed solely by the magnetic field of the white dwarf. Due to the increasing disk mass and hence increasing disk gas pressure, the tilted disk eventually becomes decoupled from the magnetic field. The tidal action of the donor leads to a retrograde (i.e., nodal) precession of the tilted disk’s streamlines, and the disk becomes twisted. When the disk tilt is greater than 4°, the incoming gas stream no longer strikes the disk rim (i.e., bright shocked region). Matter is now transported over and under the disk rim to the inner regions of the disk. Over time, the increased mass of inner parts of the disk due to the action of the colinear gas stream returns the inner-disk regions to a colinear configuration. Meanwhile, the outer regions of the tilted, twisted disk become warped. Our simulations suggest that the lifetime of an intermediate polar’s tilted disk could be several tens to thousands of orbital periods.  相似文献   

2.
We have developed a three-dimensional numerical model and applied it to simulate plasma flows in semi-detached binary systems whose accretor possesses a strong intrinsic magnetic field. The model is based on the assumption that the plasma dynamics are determined by the slow mean flow, which forms a backdrop for the rapid propagation of MHD waves. The equations describing the slow motion of matter were obtained by averaging over rapidly propagating pulsations. The numerical model includes the diffusion of magnetic field by current dissipation in turbulent vortices, magnetic buoyancy, and wave MHD turbulence. A modified three-dimensional, parallel, numerical code was used to simulate the flow structure in close binary systems with various accretor magnetic fields, from 105 to 108 G. The conditions for the formation of the accretion disk and the criteria distinguishing the two types of flow corresponding to intermediate polars and polars are discussed.  相似文献   

3.
We present a qualitative analysis of possible changes in the structure of accretion disks that occur in the transition from hot to cool disks. We suggest that an additional spiral-density wave can exist in the inner parts of the disk, where gas-dynamical perturbations are negligible. We consider the formation of this wave and its parameters. The results of a three-dimensional gas-dynamical simulation of a cool accretion disk are presented; these results confirm the possibility of the formation of a new, “precessional,” spiral wave in the inner regions of a cool accretion disk. Possible observational manifestations of such a wave are discussed.  相似文献   

4.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

5.
Our previous studies of large-scale vortical flows arising in shear flows of stellar accretion disks with Keplerian azimuthal velocity distributions as a result of the development of small perturbations are continued. The development of large-scale instability in an accretion disk is investigated via mathematical modeling. One result obtained is the change of the disk flow structure due to the formation of large vortices. In the limiting case, sufficiently long evolution leads to the formation of several asymmetric spiral structures of the flow of disk matter. The presence of large-scale structures leads to angular-momentum redistribution in the disk.  相似文献   

6.
Self-consistent modeling of a protostar and protostellar disk is carried out for early stages of their evolution. The accretion rate at distances of sevral astronomical units from the protostar is appreciably variable, which is reflected in the protostar’s luminosity. The amplitude of the variations in the accretion rate and luminosity grows together with the sampling period, as a consequence of the nature of gravitationally unstable protostellar disks. A comparison of model luminosity variations with those derived from observations of nearby sites of star formation shows that the model variations are appreciably lower than the observed values for sampling periods of less than 10 years, indicating the presence of additional sources of variability on small dynamical distances from the protostar.  相似文献   

7.
The results of studies of the over-reflection mechanism for the development of hydrodynamical instability in the accretion disks of close binary stars are presented. The driving of this instability is shown to result in the generation of regular, large-scale, spiral-vortex structures and the development of turbulence in the disk. The derived estimates of the coefficient of turbulent viscosity are in good agreement with the observations, and are able to explain the high rate of angular-momentum transfer and the measured accretion rate. The developed theoretical model is used with the observational data to derive a power-law spectrum for the developed turbulence.  相似文献   

8.
Accretion disks in binary systems can experience hydrodynamical influences at both their inner and outer edges. The former is typical for protoplanetary disks around young T Tauri stars, while the latter is typical for circumstellar disks in close binaries. This influence excites perturbations with various scales and amplitudes in the disk. The nonlinear evolution of perturbations with a finite, but small amplitude against the background of a sub-Keplerian flow is investigated. Nonlinear effects at the fronts of perturbation waves lead to the formation of discontinuities in the density and radial velocity; i.e., to formation of shocks. The tangential flow in the neighborhood of the shock becomes equivalent to a flow in a boundary layer. Due to an instability of the tangential flow, the disk becomes turbulent. The characteristics of the turbulence depend on the parameters of the perturbations, but the Shakura–Syunyaev α parameter does not exceed ~0.1.  相似文献   

9.
We present the results of three-dimensional numerical simulations of flow structures in binary systems with spiral shock waves. Variations of the mass-transfer rate perturb the equilibrium state of the accretion disk; consequently, a condensation (blob) behind the shock breaks away from the shock front and moves through the disk with variable speed. Our computations indicate that the blob is a long-lived formation, whose mean parameters do not vary substantially on timescales of several tens of orbital periods of the system. The presence of the spiral shocks maintains the compact blob in the disk: it prevents the blob from spreading due to the differential motion of matter in the disk, and dissipative spreading on this timescale is negligible. A number of cataclysmic variables display periodic or quasi-periodic photometric variations in their light curves with characteristic periods ~0.1–0.2P orb, where P orb is the orbital period. The blobs formed in systems with spiral shock waves are examined as a possible origin for these variations. The qualitative (and, in part, quantitative) agreement between our computations and observations of IP Peg and EX Dra provides evidence for the efficacy of the proposed model.  相似文献   

10.
We discuss characteristic features of the magnetic gas-dynamical structure of the flows in a semi-detached binary system obtained from three-dimensional simulations, assuming that the intrinsic magnetic field of the accreting star is dipolar. The turbulent diffusion of the magnetic field is taken into account. The SS Cyg system is considered as an example. Including the magnetic field can alter the basic parameters of the accretion disk, such as the accretion rate and the characteristic density. The magnetic field in the disk is primarily toroidal.  相似文献   

11.
We consider the origin and development of large-scale turbulence in a shear flow in a stellar accretion disk. The ratio of the kinetic energy of vortices originating in the turbulent flow and the total initial kinetic energy of the rotating disk is essentially constant. The large-scale structures that form are able to redistribute the angular momentum without any appreciable heating of the matter.  相似文献   

12.
点坝砂体是我国重要的油气储集层之一。随着河道的迁移,点坝砂体内部构型具有复杂性和多变性,使得现代沉积和古代露头都难以完全完整定量表征。因此,常常需要结合现代沉积和古代露头,运用先进的辅助工具(如航拍、遥感影像等)和数学方法,对点坝砂体的分布和迁移过程进行表征。本文通过分析良好的野外露头并结合卫片,识别了准噶尔盆地南缘发育的侏罗系齐古组古代露头剖面上的点坝砂体,精细解剖了点坝的平面与剖面叠迁样式,并分别对扩张型、迁移型、扩张旋转型及迁移旋转型四种点坝砂体类型的平面结构表征参数(弯度、曲率及扩张系数)、剖面叠迁样式进行了分析,建立了点坝砂体叠迁模式。该研究对于油气开发具有现实的指导意义,为古河道重建和储层构型建模提供依据。  相似文献   

13.
The paper continues our studies of large-scale instability arising during shearmotions in stellar accretion disks due to the development of small perturbations. The evolution of a local perturbation introduced into the outer part of a stationary accretion disk is modeled mathematically. The possible formation of large-scale structures that propagate throughout the disk, leading to an appreciable redistribution of angular momentum, is demonstrated.  相似文献   

14.
We have fit outbursts of two X-ray novae (Nova Monocerotis 1975=A0620-00 and Nova Muscae GS 1991=1124-683) using a non-steady-state accretion-disk model. The model is based on a new solution for a diffusion-type equation for non-steady-state accretion and describes the evolution of a viscous α disk in a binary system after the peak of the outburst, when the matter in the disk is totally ionized. The accretion rate in the disk decreases according to a power law. We derive formulas for the accretion rate and effective temperature of the disk. The model has three free input parameters: the mass of the central object M, the turbulence parameter α, and the normalization parameter δt. The results of the modeling are compared with the observed X-ray and optical B and V light curves. The estimates for the turbulence parameter α are similar: 0.2–0.4 for A 0620-00 and 0.45–0.65 for GS 1124-683, suggesting a similar nature for the viscosity in the accretion disks around the compact objects in these sources. We have also derived the distances to these systems as functions of the masses of their compact objects.  相似文献   

15.
Spectropolarimetric observations of a number of Active Galactic Nuclei obtained using the SCORPIO-2 aperture focal reducer installed on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are used to estimate physical parameters of these objects. The measured polarization and its wavelength dependence are consistent with the expectations of a standard accretion-disk model taking into account the effect of Faraday depolarization over the mean free path of the emitted photons. Estimates of the magnetic field in the accretion disk near the innermost stable orbit and the spin of the accreting central black hole are obtained. It is concluded that supermassive black holes with standard accretion disks and equal magnetic and radiative pressures are primarily Kerr black holes.  相似文献   

16.
《地学前缘(英文版)》2019,10(6):2189-2202
Apatite fission-track analysis and thermochronologic statistical modeling of Precambrian-Oligocenc plutonic and metamorphic rocks from the Lesser Caucasus resolve two discrete cooling episodes.Cooling occurred during incremental crustal shortening due to obduction and continental accretion along the margins of the northern branch of the Neotethys.(1) The thermochronometric record of a Late Cretaceous(Turonian-Maastrichtian) cooling/exhumation event,coeval to widespread ophiolite obduction,is still present only in a relatively small area of the upper plate of the Amasia-Sevan-Akera(ASA) suture zone,i.e.the suture marking the final closure of the northern Neotethys during the Paleogene.Such area has not been affected by significant later exhumation.(2) Rapid cooling/exhumation occurred in the Early-Middle Miocene in both the lower and upper plates of the ASA suture zone,obscuring previous thermochronologic signatures over most of the study area.Miocene contractional reactivation of the ASA suture zone occurred contemporaneously with the main phase of shortening and exhumation along the Bitlis suture zone marking the closure of the southern branch of the Neotethys and the ensuing ArabiaEurasia collision.Miocene collisional stress from the Bitlis suture zone was transmitted northward across the Anatolian hinterland,which was left relatively undeformed,and focused along preexisting structural discontinuities such as the eastern Pontides and the ASA suture zone.  相似文献   

17.
We have modeled the Hα, Hβ, and Hγ (Balmer series), P14 (Paschen series), and Brγ (Brackett series) hydrogen lines formed in the inner regions of the accretion disk around the Herbig Ae star UX Ori. Our calculations are based on spectra obtained with the Nordic Optical Telescope (NOT) and the IRTF. We computed a grid of non-LTE models for a radiating area in the accretion disk and determined the basic parameters of the lines using the method of Sobolev. Analyzing the theoretical and observed line profiles, equivalent widths, and luminosities, we have estimated the accretion rate and electron-temperature distribution in the inner parts of the accretion disk. The accretion rate of UX Ori is about $\dot M_a = (3 - 10) \times 10^{ - 9} M_ \odot /yr$ , and the temperature distribution is consistent with the power law T(r)=T(r *)(r/r *)?1/n , where the electron temperature near the stellar surface T(r *) is 15000–20000 K and the power-law index n≈2–3 is about two to three. The resulting value for $\dot M_a $ eliminates problems connected with the application of magnetospheric accretion models to Herbig Ae/Be stars. Another important conclusion is that, at the estimated accretion rate, the energy release is substantially (about two orders of magnitude) lower than the stellar luminosity. Therefore, the optical radiation of UX Ori accretion disks cannot appreciably contribute to the observed variability of these stars, which must be determined mainly by variability in the circumstellar extinction.  相似文献   

18.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

19.
The formation of ring structures in galactic disks is investigated. It is shown that, in addition to the known mechanism of forming rings in “head-on” collisions between galaxies, ring structures can be formed during close passages of galaxies if the perturbing galaxy moves in a plane close to the equatorial plane of the perturbed disk galaxy, opposite to the direction of rotation of the disk. Numerical simulations of the formation of structures in the disk of a massive galaxy undergoing a passage with another galaxy are considered. The results of these cmputations show the formation of pronounced ring structures in the galactic disk when the initial inclination of the trajectory of the perturbing galaxy to the equatorial plane of the perturbed galaxy is no more than ~25°. However, the probability of close passages of galaxies with these parameters is small, as is the probability of head-on collisions. The characteristic time scale for the existence of pronounced rings is of order the dynamical time scale at the edge of the galaxy, 200–300 million years, close to the corresponding time for head-on collisions. The evolution of the rings has the same character in both cases: they gradually expand and move toward the periphery of the galaxy. The results of these simulations can also be applied to a close passage of one star by another star with a protoplanetary disk. According to the computation results, the characteristic time scale for the existence of pronounced rings in such a protoplanetary disk depends mainly on the size of the disk; this time scale can reach several tens of thousands of years for a disk radius of about 1000 AU. The formation of ring structures in such a disk could influence the formation and evolution of planetesimals, and possibly the character of the formation of planets and the distribution of their orbital semi-major axes.  相似文献   

20.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号