首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of close passages of galaxies on the shapes of disk galaxies and the distribution of stars in them is studied for several types of interactions in the framework of the restricted N-body problem. Depending on the conditions adopted, either two spiral density waves or ring structures are formed in the stellar disk of the galaxy. These structures can generate star formation fronts with the corresponding shape, as are observed in disk galaxies. Our calculations can also be applied to study the influence of the passage of a nearby star on a protoplanetary disk. The formation of ring structures there could specify the type of planet formation in the outer regions of the planetary system and the distribution of semimajor axes for the planetary orbits. We use the same model to study the generation and evolution of spiral density waves in the stellar disks of galaxies as a result of the recently found asymmetry of the gravitational potential in the massive dark haloes in disk galaxies. The dipole component of the gravitational field of the halo can continuously permanently generate the spiral structure in disk galaxies.  相似文献   

2.
The paper analyzes possible origins of stars located in intergalactic space that are not bound to specific galaxies, which comprise 15–50% of all stars in galaxy clusters. Some such stars can form in streams of intergalactic gas flowing around gas-rich disk galaxies moving in the cluster. Others may be the products of the decay of young, low-mass, spheroidal galaxies after the loss of their gaseous components during an initial burst of star formation. The decay of low-mass disk galaxies moving at high speeds after they have lost their gaseous components due to the pressure of the incident flow of dense intergalactic gas is possible in the cluster core. The largest fraction of intergalactic stars are probably produced by the partial disruption of galaxies as a result of close passages, collisions, or mergers. Collisions of low-mass, gas-rich galaxies are especially good suppliers of intergalactic stars. Both stars from decaying stellar components of galaxies and stars arising in the gaseous components of colliding galaxies can be supplied to the intergalactic medium. The merger of galaxies harboring supermassive black holes in their nuclei could lead to the partial or total disruption of these galaxies during the deceleration of the binary black hole that is formed during the merger. An enhanced density of intergalactic stars is observed in the cores of galaxy clusters, underscoring the role of galaxy collisions in the formation of the intergalactic stellar population, since the frequency of galaxy collisions grows with their density.  相似文献   

3.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

4.
Surface photometry data are presented for 12 southern lenticular galaxies located in regions of low density. Digital images in the gri bands were obtained on the LCOGT network of meter-class telescopes. Structural parameters of the global stellar disks of the galaxies are calculated—the exponential scale and relative thickness. The presence of substructure in the disks is noted; in particular, more than half the studied galaxies possess ring structures, sometimes more than one. The color maps presented indicate complex evolution of the substructure of the disks of lenticular galaxies: they can be classified as blue (ongoing star formation) or red (concentration of dust). The rings do not always lie in the main plane of the disk; there are cases of clearly inclined, or even polar, compact rings.  相似文献   

5.
Stellar photometry obtained using the Hubble Space Telescope is used to study the distributions of the number densities of stars of various ages in 12 irregular and dwarf spiral galaxies viewed edge-on. Two subsystems can be distinguished in all the galaxies: a thin disk comprised of young stars and a thick disk containing a large fraction of old stars (primarily red giants) in the system. Variations of the stellar number density in the thin and thick disks in the Z direction perpendicular to the plane of the galaxy follow an exponential law. The size of the thin disk corresponds to the visible size of the galaxy at the μ = 25 mag/arcsec2 isophote, while the thick disk is a factor of two to three larger. In addition to a thick disk, the massive irregular galaxy M82 also has a more extended stellar halo that is flattened at the galactic poles. The results of our previous study of 12 face-on galaxies are used together with the new results presented here to construct an empirical model for the stellar structure of irregular galaxies. Original Russian Text ? N.A. Tikhonov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 579–588.  相似文献   

6.
We suggest and justify a new photometric method enabling the derivation of the relative thickness of a galactic disk from the two-dimensional surface-brightness distribution of the galaxy in the plane of the sky. The method is applied to images of 45 early-type (S0-Sb) galaxies with known radial exponential or piece-wise-exponential (with a flatter outer profile) surface-brightness distributions. The data were taken from the open SDSS archive. The statistics of the estimated relative thicknesses of the stellar disks of early-type galaxies show the following features. The disks of lenticular and spiral early-type galaxies have similar thickness. The presence of a bar results in only a slight increase of the thickness. However, there is a substantial difference between the thicknesses of disks with a single exponential brightness profile and exponential disks that represent the inner segments of Type III profiles (after Erwin); i.e., they have an outer exponential disk with a larger characteristic scale. The disks are significantly thicker in the former than in the latter case. This may provide evidence that a single exponential scale in a disk surface-brightness distribution forms due to viscosity effects acting over the entire period of star-formation evolution in the disk.  相似文献   

7.
Results of numerical simulations of a collision of the gaseous components of two identical disk galaxies during a head-on collision of the galaxies in the polar direction are presented. When the relative velocity of the galaxy collision is small, their gaseous components merge. At high relative velocities (100–500 km/s), the massive stellar components of the galaxies (M g = 109 M ) pass through each other nearly freely, leaving behind the gaseous components, which are decelerated and heated by the collision. If the overall gaseous component of the colliding galaxies is able to cool to the virial temperature during the collision, a new galaxy forms. At velocities V ≥ 500 km/s, the gaseous component does not have time to cool, and the gas is scattered into intergalactic space, supplying it with heavy elements produced in supernovae in the colliding galaxies. High-velocity (V ≥ 100 km/s) collisions of identical low-mass galaxies (M g ≤ 109 M ) whose mass is dominated by the mass of gas lead to the disruption of their stellar components. The overall gaseous component forms a new galaxy when V ≤ 500 km/s, and is scattered into intergalactic space if the velocity becomes higher than this. A galaxy collision increases the star-formation rates in the disk galaxies by nearly a factor of 100. Rotation of the colliding galaxies in the same direction increases the changes of the disruption of both the stellar and gaseous components of the galaxies. The merger of galaxies during their collision can explain the presence of gaseous disks rotating opposite to the rotation of the stellar component in some ordinary elliptical galaxies. Moreover, galaxy mergers can help explain the origin of a comparatively young stellar population in some elliptical galaxies.  相似文献   

8.
We study the evolution of the [O/Fe]-[Fe/H] relation and the dependence of the iron abundance on distance from the galactic plane z in a one-zone model for a disk galaxy, starting from the beginning of star formation. We obtain good agreement with the observational data, including, for the first time, agreement for the [Fe/H]-z relation out to heights of 16 kpc. We also study the influence of the presence of dark matter in the galaxies on the star-formation rate. Comparison of the observed luminosity of the Galaxy with the model prediction places constraints on the fractional mass of dark matter, which cannot be much larger than the fractional mass of visible matter, at least within the assumed radius of the Galaxy, ~20 kpc. We studied the evolution of disk galaxies with various masses, which should obey the Tully-Fisher relation, M ? R2. The Tully-Fisher relation can be explained as a combination of a selection effect related to the observed surface brightnesses of galaxies with large radii and the conditions for the formation for elliptical galaxies.  相似文献   

9.
Seven early-type galaxies that are members of the massive X-ray group containing NGC 80 have been studied using two-dimensional spectroscopy with the 6-m telescope of the Special Astrophysical Observatory. We searched for evidence for the synchronous secular evolution of the galaxies in the group. The bulges of five of the seven galaxies appear to be old, with the average age of the bulge stars being 10–15 billion years. Signs of a relatively recent star-formation burst are observed in the small S0 galaxy IC 1548, whose average bulge age is 3 billion years and average core age is 1.5 billion years. A circumnuclear polar gas ring was also detected in this galaxy; in its outer regions, it makes a smooth transition to a gas disk that counter-rotates relative to the stars. IC 1548 probably underwent a close interaction, which resulted in its transformation from a spiral to a lenticular galaxy; the same interaction may also have induced the central burst of star formation. In the giant E0 galaxy NGC 83, a compact massive stellar-gas disk with a radius of about 2 kpc and very rapid rotation is observed, with ongoing star formation; the so-called “minor merger” is likely to have occurred there. We conclude that the NGC 80 group is in a state of formation, with the small NGC 83 subgroup “falling into” the large, old NGC 80 subgroup.  相似文献   

10.
A model for the generation of large-scale magnetic fields is constructed for the galaxy NGC 5775, in which the magnetic field has the form of a dipolar dynamo wave propagating along the galactic disk. The excitation of such a mode, which is unusual for galactic dynamos, can be explained by the strong variation of the galactic rotation with height above the plane of symmetry of the galactic disk.  相似文献   

11.
The results of multicolor surface photometry of the S0 galaxies NGC 524, NGC 1138, and NGC 7280 and the spiral galaxies NGC 532, NGC 783, and NGC 1589 are reported. U BV RI observations were acquired with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan), while JHK data were taken from the 2MASS catalog. The overall structure of the galaxies is analyzed and the galaxy images decomposed into bulge and disk components. The parameters of the galaxy components—rings, bars, spiral arms, and dust lanes—are determined. The bulge/disk decompositions based on averaged one-dimensional photometric profiles yield incorrect parameters for the bulges of the S0-Sa galaxies with bars and/or rings, whose inner regions are dominated by the radiation of the bulge.  相似文献   

12.
BVR c photometry of the galaxy UGC 4332 is presented. It is shown that its inclusion in a list of candidate galaxies with polar rings is erroneous. In reality, it is a spiral galaxy with a powerful bulge and a disturbed dust disk viewed edge-on.  相似文献   

13.
We present and analyze spectroscopic and photometric observations for NGC 2685, the prototype polar-ring galaxy. The spectroscopic data were acquired using the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the UAGS spectrograph and a scanning Fabry-Perot interferometer, while the photometric analysis was based on images from the Hubble Space Telescope archive. We demonstrate that the subsystem usually called the “inner polar ring” is a highly inhomogeneous gas and dust disk rotating approximately in the polar plane relative to the galaxy’s main body. When the self-absorption in the disk is taken into account, a comparison of its color indices with those from model computations of the color evolution of galaxies results in an age for the disk of about 1.4 × 109 years, much lower than the previously accepted estimate.  相似文献   

14.
We have carried out numerical simulations of hydrodynamical processes occurring in the disks of spiral galaxies. The initial state of the disk is an equilibrium stellar-gaseous configuration. The spherical component is described by a standard analytical model for the gravitational potential. The behavior of the modeled disk in the presence of an external perturbation is analyzed. The results of numerical simulations of stellar-gaseous galactic disks aimed at studying the formation of polygonal structures in spiral galaxies are presented. The possible influence of spur-like formations on the appearance of polygonal structure is studied.  相似文献   

15.
Published data on rotation curves and the radial distribution of the surface density of neutral hydrogen (HI) in galaxies with a low gas content are used to calculate radial profiles of the volume density of HI in the planes of the galactic disks. A self-consistent model for the disks is used, taking into account the self-gravitation of the gas and the presence of a pseudo-isothermal, massive halo. Eleven low-surface-brightness (LSB) galaxies and three S0 galaxies in which HI is detected are considered. The gaseous and stellar disks are taken to be in equilibrium and axially symmetric, and the velocity dispersion in the stellar disk to be equal to the marginal value for gravitational perturbations; in general, this gives an upper limit for the gas density. It is shown that, on average, the gas volume densities are two orders of magnitude lower in LSB galaxies than in galaxies with normal brightnesses at the same R values, while the three S0 galaxies occupy an intermediate position. The volume density of gas observed at the galaxy peripheries are less than 10−27 g/cm3, even in the plane of the disk. The role of the UV background in ionizing outer regions is discussed. The obtained gas densities can be used to estimate the star-forming efficiency in regions of low density.  相似文献   

16.
It is currently generally believed that magnetic fields in the disks of spiral galaxies are generated by the dynamo mechanism, which is based on the joint action of differential rotation and the alpha effect, associated with turbulent motions in the interstellar gas. Together with their disks, outer rings are also encountered in galaxies, where magnetic fields may be present. In earlier studies, the generation of magnetic fields has been described in a planar approximation, whose essence is that the size of rings perpendicular to the plane of the galaxy is much smaller than their size in the radial direction. However, it is plausible that these sizesmay sometimes be comparable, so that it would be more logical to suppose that a ring has a toroidal form. A model for a dynamo in a toroidal ring is constructed in this study. This model describes the magnetic field using two functions, corresponding to the toroidal component of the field and the part of the vector potential characterizing its poloidal component. The possible generation of magnetic field in various cases is shown, with both quadrupolar symmetry (close to the fields obtained in the planar approximation) and dipolar symmetry (when two layers with oppositely directed magnetic fields form in the ring). The parameter values for which the generation of fields with one or the other type of symmetry is possible are estimated. The results can also be used to describe the evolution of the magnetic fields in other toroidal astrophysical objects.  相似文献   

17.
Chudakova  E. M. 《Astronomy Reports》2019,63(5):353-364

A method for determining the thickness of the stellar disk of a galaxy from a photometric image of the galaxy in the plane of the sky is proposed and justified. The method can be applied to determine the thickness of plane-parallel exponential disks with an arbitrary, radius-independent, luminosity distribution perpendicular to the plane of the disk J(r, z) = exp(-r/h)f(z). A special feature and advantage of the method is that it enables determination of the thicknesses of disks viewed at arbitrary angles to the plane of the sky (but not strictly edge-on or face-on). The key idea of the method is finding the true inclinations of galaxies viewed at arbitrary angles not from their isophotes, but instead from the azimuthal distribution of the exponential parameter h. The difference between the inclination determined in the traditional way using the isophotes and the true inclination enables estimation of the thickness of the disk. The effectiveness of the method for determining the inclinations of plane-parallel disks is confirmed using a sample of model isothermal galactic disks: I(r, z) = I0 exp(-r/h)sech2(z/z0). The inclinations of the planes of the model galaxies to the line of sight and the relative thicknesses in the model sample vary arbitrarily, making it possible to determine the limits of applicability of the method: z0/h < 0.7 and 10° <i < 75°.A sample of 44 piecewise-exponential disks of galaxies of the southern sky clusters is used to illustrate the application of the technique to observational data. Comparing the distribution of inclinations calculated using the new method and the traditional isophote method shows that the new method yields a more uniform distribution of inclinations to the plane of the sky for the sample galaxies. The derived average disk thicknesses and the disk-thickness distributions are consistent with statistical estimates and observational data from the literature for samples of galaxies viewed edge-on

  相似文献   

18.
The ejection of stars from spheroidal and disk dwarf galaxies resulting from the decay of OB associations is studied. This has substantial observational consequences for disk galaxies with escape velocities up to 20 km/s, or dynamical masses up to 108 M . The ejection of stars can (i) reduce the abundances of the products of Type Ia supernovae and, to a lesser degree, Type II supernovae, in disk stars, (ii) chemically enrich the galactic halo and intergalactic medium, (iii) lead to the loss of 50% of the stellar mass in galaxies with masses ∼107 M and the loss of all stars in systems with masses ≲105 M , (iv) increase the mass-to-luminosity ratio of the galaxy.  相似文献   

19.
A new theory for the formation of the main structures of galaxies is proposed: these structures are viewed as low-frequency normal modes in disks consisting of precessing stellar orbits. Mathematically, the theory is based on an integral equation in the form of a classical eigenvalue problem, with the eigenvalues being equal to the angular velocities Ωp of the modes. Analysis of the general properties of the master integral equation (without finding concrete solutions) shows that it admits two types of solutions: barlike and spiral. The numerical algorithms are discussed and particular solutions of the integral equation are presented. If resonance interaction can be neglected, the bar mode represents a neutral perturbation of the disk. This mode can be amplified by the effect of the long-range gravitational field of the mode on stars located in the vicinity of the corotation and outer-Lindblad resonances. Spiral perturbations are waves with zero total angular momentum, and spiral modes are excited at the inner-Lindblad resonance. The approach proposed is compared to currently accepted mechanisms for the formation of galactic structures. In particular, Toomre's application of the swing amplification mechanism to explain the formation of global modes is critically discussed. In addition, we show that it is not correct to simulate the real stellar velocity dispersion in a galaxy using softened gravity.  相似文献   

20.
We propose a new method for estimating the HI deficiency in galaxies. The method is based on a semi-empirical relationship between the total mass of HI and specific angular momentum of isolated galaxies. The atomic-hydrogen deficiency is estimated for nearby spiral galaxies and for spiral galaxies in the Virgo and Coma clusters. The mean HI deficiencies determined for these samples using our method are similar to those obtained with conventional methods, although there are considerable differences in some cases. The HI deficiency in nearby galaxies does not depend on their degree of isolation, and there is no systematic discrepancy between their HI and “normal” masses. Significant HI deficiencies are observed in the Virgo and Coma clusters, out to distances of 1.5 and 3–4 Mpc from the cluster centers, respectively. At such distances, the ram pressure is too small to sweep a considerable amount of gas from the galactic disks. Either these galaxies have passed through the dense cluster center, or their gas deficiency is due to the fact that the halo had stopped accreting onto the disk when the galaxy entered the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号