首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
The greater part of Etna can be regarded as a complex strato-shield volcano constructed from the overlapping products of several centres of trachy-basaltic activity. The Valle del Bove is a horse-shoe-shaped caldera, 8 km long and 5 km wide, cut into the eastern flanks of Etna. The caldera is one of the few areas on the volcano where historic eruptions have not obscured the products of pre-historic centres of activity and these are well exposed in the cliff walls surrounding the caldera. Examination of these older volcanics provides important information on the eruptive style and internal plumbing of the Etna volcano during pre-historic times, and suggests that both were significantly different from the present day.Much of the southern wall of the Valle del Bove represents a surviving portion of the Trifoglietto II volcano, the largest pre-historic centre of activity. A stratigraphy is constructed for the southern wall, the Trifoglietto II lavas and pyroclastics rest unconformably upon the eroded remnants of an older centre, and are themselves overlain by the products of younger centres. All the lavas exposed in the southern wall are of alkalic affinity and comprise a trachybasaltic suite ranging from hawaiite to benmoreite. Variation in the chemistry of the lavas can be explained by their differentiation at high levels in the crust from a more basic magma of alkali olivine-basalt/hawaiite composition. An anomalous trend in the TiO2 content of the Trifoglietto II lavas may be explained by the fractionation of kaersutite (Ti-rich amphibole).A study has been made of the numerous dykes exposed in the walls of the Valle del Bove, the alignments of which parallel trends which are important on Etna at the present time.It is proposed that the initial opening of the Valle del Bove occurred sometime between 20,000 and 10,000 y. B.P., as a result of a phreatic or phreato-magmatic explosion near the base of the eastern flank of Trifoglietto II. This is visualised as triggering a slope failure and resulting in the destruction of much of the centre by a catastrophic landslide. This mechanism has much in common with the explosive eruptions which produced both the Bandai-san (Japan) caldera in 1888, and the Mount St Helens caldera in May, 1980.  相似文献   

2.
During the July–August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (<7° dip) in the Torre del Filosofo area, and perpendicular to the steep slope (25° dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14° for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.  相似文献   

3.
Previously undescribed debris-avalanche deposits occur in two locations downslope from the open end of the Valle del Bove. These outcrops comprise unstratified, ungraded deposits of metre-scale lava blocks in a matrix of weathered and fractured lava clasts. The avalanche deposits are unconformably overlain by matrix- to clast-supported conglomerates, representing debris-flow and interbedded fluvial deposits, that constitute most of the Milo Lahar sequence. We present evidence that the Milo Lahar sequence, which crops out just at the exit of the Valle del Bove, formed during the opening and enlargement of this depression. The presence of the avalanche deposits at the base of the Milo Lahar sequence indicates that catastrophic landslides were involved in the formation of the Valle del Bove. The composition of lavas in the debris avalanche deposits is similar to that of most of the Ellittico volcanic sequence exposed along the northern wall of the Valle del Bove. Radiocarbon dates of 8400 and 5300 years BP from the base and top, respectively, of the debris-flow sequence indicate that the Milo Lahars are correlative with the exposed part of the Chiancone deposit. The basal lahars of the Chiancone, which contain lava blocks whose compositions partially overlap that of blocks in the avalanche deposits, may have formed by water concentration in the distal end of the avalanche causing transformation to debris, or alternatively by reworking of the avalanche deposit.  相似文献   

4.
A new multidisciplinary study, combining geology, petrography, and geochemistry, on the rocks of the isolated hill of Mount Calanna (Mount Etna, Italy) has provided evidence for the existence of a dyke swarm, formed by more than 200 dykes distributed over an area of ~0.7 km2, with an intensity of intrusion up to 40%. All bodies are deeply altered, and the geological and mesostructural surveying of 132 dykes revealed that they intruded in E–W direction, with an average dip of 60°. The faults affecting the outcrop have in general an E–W strike and dip of ~55°: these have all normal motion and have been interpreted as coeval with the dykes. This interpretation contrasts with the previous hypothesis that considered Mount Calanna as a thrust resulting from compressive deformation resulting from the gravitational spreading of the volcanic edifice. Mount Calanna is here interpreted as the uppermost portion of a vertically extensive magmatic plexus that fed the eruptive activity of one (or more) eruptive center/s sited in the Valle del Bove area. Measurements of the apparent densities on 23 dykes and host rock samples give an average value of 2,420 kg/m3 for the entire complex, ~15% lower than the density expected for hawaiitic magma, placing an important constraint on the geophysical identification of similar structures. Considering that Mount Etna is not an old eroded edifice but an active and growing volcano, the exposure of this subvolcanic structure can be regarded as exceptional. Its geometry and physical characteristics can be thus regarded as an interesting example of the present-day shallow plumbing system of Mount Etna as well as of other basaltic volcanoes.  相似文献   

5.
The distributions and alignments of over 200 prehistoric dykes exposed in the walls of the Valle del Bove caldera on Mount Etna have been plotted, and samples collected from some 10% of those occurring in the southern wall. Important tectonic trends are reflected by the dykes, along which magma movement was facilitated prior to the formation of the caldera. Close directional relations between the dyke trends and the orientations of historic fissures on the volcano, point to the existence of a plexus of interconnecting subsurface fissures immediately to the south-east of the summit. A model is envisaged within which magma enters this «clearing house» from depth, and is distributed via fissures to other parts of the volcano including the summit region. Here, the interaction of fissures with the conduits of the summit craters is put forward as a mechanism to explain the behaviour of recent activity.  相似文献   

6.
Archaeoseismology can provide a useful chronological tool for constraining earthquakes and documenting significant evidence that would otherwise be lost. In this paper, we report a case of surface faulting on ancient man-made structures belonging to the archaeological site of Santa Venera al Pozzo situated along the eastern flank of Mt. Etna volcano in eastern Sicily (southern Italy), which is affected by well-developed tectonic faults. Geological surveys highlight a set of fractures affecting the archaeological ruins, suggesting the occurrence of a capable fault zone across the area. An integrated geophysical survey was carried out in order to identify the main subsurface tectonic discontinuity ascribable to the fault zone. The information derived from different geophysical techniques, such as electrical resistivity tomography, seismic refraction tomography, ground-penetrating radar, and magnetic surveys allowed us to infer that the fractures observed at the surface could have been produced by coseismic rupture. They are conceivably linked to a strong earthquake that probably occurred in the Roman period, around mid-end of the third-century AD; time constraints are inferred through the dating of buildings of the archaeological site.  相似文献   

7.
The Valle del Bove, situated on the east side of Mount Etna is considered as the result of an important collapse. The structural survey of the continuous rock outcrops in the walls of the depression permits to distinguish several unities belonging to different volcanoes, which have been destroyed by the collapse. The succession of the different volcanic centers shows a migration of the eruptive activity from East to West. The collapse took place only when the main activity was removed to the emplacement of the principal crater now in activity. This E-W direction of migration corresponds to one of the main fault directions of Etna; the collapse and the formation of the caldera is considered as the consequence of a violent pumice explosion or as the result of the westward migration of the magma along this fault.  相似文献   

8.
Self-potential (SP) surveys were made on Mount Pelée volcano (Martinique Island, French West Indies) in 1991 and 1992 in order to recognize its hydrothermal system, the associated groundwater channeling and the main superficial structures of the massif. Almost 70 km of profiles were carried out with an average sample spacing of 50 m. Measurements essentially reveal negative SP anomalies, down to −1700 mV, with high gradients (−1.83 mV/m) due to the infiltration of meteoric water into the massif. Rims of summit calderas Morne Macouba and Etang-Sec present sharp negative SP anomalies on the western, northern, and eastern flanks. Negative SP anomalies indicate no upward water flow beneath Mount Pelée summit. On the southwestern volcano flank, a 3.5×6 km horseshoe-shaped structure corresponding to a southwest flank collapse event, older than 25,000 years BP, is clearly identified by the SP mapping. High gradients border the inner southern rim from Morne Calebasse to St Pierre town and the Caribbean Sea. Along the northern rim of the horseshoe-shaped structure the negative SP anomalies give place to a positive SP anomaly, up to 200 mV, of SW–NE trend. This zone covers the area of two active hot springs (Sources Chaudes and Puits Chaud: 40–65°C). Marine magnetic surveys and bathymetry show that the horseshoe-shaped structure spreads into the Caribbean Sea up to about 10 km from the coast. Buried structural discontinuities are evidenced inside the flank collapse structure. The upper one deviates the groundwater flow coming from the summit toward the south flank where the flow finds an indentation to expand again downwards. This discontinuity is either an old hypothetical caldera rim partly destroyed by the collapse of the south–southwestern flank and covered by recent pyroclastic deposits, or more probably the trace of a bulge landslide. A circulation model of the hydrothermal waters is proposed. Rainfall (5–6 m/year) is partly drained inside the summital calderas and the flank collapse zone through pyroclastic flows down to an impermeable basement. There the groundwater constitutes perched aquifers at the contact of the bulge landslide, or of the hypothetical old caldera rim. Along the inner northern border of the flank collapse structure the phreatic water is reheated. Warm groundwater flows along the northern avalanche structure rim and discharges near the coast in ground and marine outcrops, of medium temperature. Finally, the main part of the meteoric water is channeled along the old caldera rim, or along the bulge landslide towards the south flank of Mount Pelée, where some gaps in the rim exist. There the groundwater finds again a subhorizontal gravitational circulation along Mount Pelée slopes into the Caribbean Sea.  相似文献   

9.
A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern part of the Valle del Bove, and interpreted as a solidified magmatic intrusion. On the western boundary of this anomaly, a low-density body is interpreted as a bubble and liquid magma mixture. Outside the central area, three other high-density anomalies are imaged and attributed to the earliest phases of volcanic activity in the area. Several interesting low-density anomalies are also identified and correlated with known fault lines and other structural features of the region.  相似文献   

10.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

11.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

12.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

13.
The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcano-tectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.  相似文献   

14.
The tectonic system of the eastern flank of Mt. Etna volcano (Sicily, Italy) is the source of most of the strongest earthquakes occurring in the area over the last 205 years. A total of 12 events with epicentre intensities ≥VIII EMS have occurred at Mt. Etna, 10 of which were located on the eastern flank. This indicates a mean recurrence time of about 20 years. This area is highly urbanised, with many villages around the volcano at altitudes up to 700 m a.s.l. The southern and eastern flanks are particularly highly populated areas, with numerous villages very close to each other. The probabilistic seismic hazard due to local faults for Mt. Etna was calculated by adopting a site approach to seismic hazard assessment. Only the site histories of local volcano-tectonic earthquakes were considered, leaving out the effects due to strong regional earthquakes that occurred in north-eastern and south-eastern Sicily. The inventory used in this application refers to residential buildings. These data were extracted from the 1991 census of the Italian National Institute of Statistics, and are grouped according to the census sections. The seismic vulnerability of the elements at risk belonging to a given building typology is described by a vulnerability index, in accordance with a damage model based on macroseismic intensities. For the estimation of economic losses due to physical damage to buildings, an integrated impact indicator was used, which is equivalent to the lost building volume. The expected annualised economic earthquake losses were evaluated both in absolute and in relative terms, and were compared with the geographical distribution of seismic hazard and with similar evaluations of losses for other regions.  相似文献   

15.
Seismic activity recorded at Mount Etna during 1992 was characterized by long-period (LP) events and tremor with fluctuating amplitudes. These signals were associated with the evolution of the eruptive activity that began on December 14, 1991. Following the occurrence of numerous volcano-tectonic earthquakes at the onset of the eruption, LP events dominated the overall seismicity starting in January, 1992. The LP activity occurred primarily in swarms, which were temporally correlated with episodic collapses of the crater floor in the Northeast Crater. Source depths determined for selected LP events suggest a source region located slightly east of Northeast Crater and extending from the surface to a depth of 2000 m. Based on the characteristic signatures of the time series, four families of LP events are identified. Each family shares common spectral peaks independent of azimuth and distance to the source. These spectral features are used to develop a fluid-filled crack model of the source. We hypothesize that the locus of the LP events represents a segment of the magma feeding system connecting a depressurizing magma body with a dike extending in the SSE direction along the western wall of Valle del Bove, toward the site of the Mount Etna eruption. We surmise that magma withdrawal from the source volume beneath Northeast Crater may have caused repeated collapses of the crater floor. Some collapse events may have produced pressure transients in the subjacent dike which acted as seismic wave sources for LP events.  相似文献   

16.
On January 30, 1974, an explosive eruption began on the western side of Etna. The activity evolved into two eruptive periods (January 30–February 17 and March 11–29). Two spatter cones (Mount De Fiore I and Mount De Fiore II) were formed at a height of about 1650 m a.s.l. and a distance of 6 km from the summit area. The effusive activity was very irregular with viscous lava flows of modest length.A seismic network of four stations was established around the upper part of the volcano on February 3. Moreover additional mobile stations were set up at several different sites in order to obtain more detailed informations on epicenter locations and spectral content of volcanic tremor.The volcanic activity is discussed in relation to the distribution of epicenters and the time-space distribution of the spectral characteristics of volcanic earthquakes and tremor. The characteristics of the seismic activity suggest that the flank eruption of Mount Etna was probably feed by a lateral branch of the main conduit yielding the activity at the Central Crater.  相似文献   

17.
On 22 September 2002, 1 month before the beginning of the flank eruption on the NE Rift, an M-3.7 earthquake struck the northeastern part of Mt. Etna, on the westernmost part of the Pernicana fault. In order to investigate the ground deformation pattern associated with this event, a multi-disciplinary approach is presented here. Just after the earthquake, specific GPS surveys were carried out on two small sub-networks, aimed at monitoring the eastern part of the Pernicana fault, and some baselines belonging to the northeastern EDM monitoring network of Mt. Etna were measured. The leveling route on the northeastern flank of the volcano was also surveyed. Furthermore, an investigation using SAR interferometry was performed and also the continuous tilt data recorded at a high precision sensor close to the epicenter were analyzed to constrain the coseismic deformation. The results of the geodetic surveys show a ground deformation pattern that affects the entire northeastern flank of the volcano, clearly shaped by the Pernicana fault, but too strong and wide to be related only to an M-3.7 earthquake. Leveling and DInSAR data highlight a local strong subsidence, up to 7 cm, close to the Pernicana fault. Significant displacements, up to 2 cm, were also detected on the upper part of the NE Rift and in the summit craters area, while the displacements decrease at lower altitude, suggesting that the dislocation did not continue further eastward. Three-dimensional GPS data inversions have been attempted in order to model the ground deformation source and its relationship with the volcano plumbing system. The model has also been constrained by vertical displacements measured by the leveling survey and by the deformation map obtained by SAR interferometry.  相似文献   

18.
This study uses on-land and offshore geological and structural data to demonstrate that a huge lateral collapse involved the SE flank of Nisyros volcano. The collapse beheaded the summit part of the volcano and also involved the submarine portion of the slope, producing a large debris avalanche deposit with a volume of about 1 km3 which has been recognized on the sea floor. On-land, stratigraphic and structural data indicate that a thick succession of lava flows (Nikia lavas) was emplaced in a huge horseshoe-shaped depression open seaward and extending below the sea. The magma-feeding system in the volcano, pre-dating and following the collapse, was structurally influenced by a dominant NE–SW direction, which is perpendicular to the newly-recognised sector collapse. The NE–SW structural trend is consistent with the regional tectonic structures found offshore around Nisyros and with the related NW–SE extension direction. We suggest that the lateral magma pressure produced by repeated magma injections along tectonic discontinuities contributed to destabilise the volcano flank. The occurrence of a pyroclastic deposit that mantled the scar left by the collapse suggests that a magma batch might have been injected inside the volcano and triggered the collapse. The lavas of the pre-collapse edifice have been deposited in alternating submarine and subaerial environments, suggesting that vertical movements might also be a major triggering mechanism for large lateral collapses. Recognition of this phenomenon is particularly important in recent/active island or coastal volcanoes, as it can trigger tsunamis.  相似文献   

19.
The 2001 and 2002–2003 flank eruptions on Mount Etna (Italy) were characterized by intense explosive activity which led to the formation of two large monogenetic scoria cones (one from each eruption) on the upper southern flank of the volcano. Continuous monitoring of Etna, especially during flank eruptions, has provided detailed information on the growth of these cones. They differ in genesis, shape, and size. A set of high resolution (1 m) digital elevation models (DEMs) derived from light detection and ranging (LIDAR) data collected during four different surveys (2004, 2005, 2006, and 2007) has been used to map morphology and to extract the morphometric parameters of the scoria cones. By comparing LIDAR-derived DEMs with a pre-eruption (1998) 10 m DEM, the volume of the two scoria cones was calculated for the first time. Comparison of the LIDAR-derived DEMs revealed in unprecedented detail morphological changes during scoria cone degradation. In particular, the morphologically more exposed and structurally weaker 2002–2003 cone was eroded rapidly during the first few years after its emplacement mainly due to gravitational instability of slopes and wind erosion.  相似文献   

20.
Zempoala is an extinct Pleistocene (∼ 0.7–0.8 Ma) stratovolcano that together with La Corona volcano (∼ 0.9 Ma) forms the southern end of the Sierra de las Cruces volcanic range, Central Mexico. The volcano consists of andesitic and dacitic lava flows and domes, as well as pyroclastic and epiclastic sequences, and has had a complex history with several flank collapses. One of these collapses occurred during the late Pleistocene on the S–SE flank of the volcano and produced the Zempoala debris avalanche deposit. This collapse could have been triggered by the reactivation of two normal fault systems (E–W and NE–SW), although magmatic activity cannot be absolutely excluded. The debris avalanche traveled 60 km to the south, covers an area of 600 km2 and has a total volume of 6 km3, with a calculated Heim coefficient (H/L) of 0.03. Based on the textural characteristics of the deposit we recognized three zones: proximal, axial, and lateral distal zone. The proximal zone consists of debris avalanche blocks that develop a hummocky topography; the axial zone corresponds with the main debris avalanche deposit made of large clasts set in a sandy matrix, which transformed to a debris flow in the lateral distal portion. The deposit is heterolithologic in composition, with dacitic and andesitic fragments from the old edifice that decrease in volume as bulking of exotic clasts from the substratum increase. Several cities (Cuernavaca, Jojutla de Juárez, Alpuyeca) with associated industrial, agricultural, and tourism activities have been built on the deposit, which pose in evidence the possible impact in case of a new event with such characteristics, since the area is still tectonically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号