首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys and drilling site-survey wells conducted by the MTI in 1997, 2001 and 2002 have revealed subsurface gas hydrate at a depth of about 290 mbsf (1235 mbsl) in the easternmost part of Nankai Trough. The MITI Nankai Trough wells were drilled in late 1999 and early 2000 to provide physical evidence for the existence of gas hydrate. During field operations, continuous LWD and wire-line well log data were obtained and numerous gas hydrate-bearing cores were recovered. Subsequence sedimentologic and geochemical analyses performed on the cores revealed important geologic controls on the formation and preservation of natural gas hydrate. This knowledge is crucial to predicting the location of other hydrate deposits and their eventual energy resource. Pore-space gas hydrates reside in sandy sediments from 205 to 268 mbsf mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick. Gas hydrate saturations are typically between 60 and 90 % throughout most of the hydrate-dominant sand layers, which are estimated by well log analyses as well as pore water chloride anomalies.
It is necessary for evaluating subfurface fluid dlow behavious to know both porosity and permeability of gas hydrate-bearing sand to evaluate subsurface fluid flow behaviors. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 40 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata.  相似文献   

2.
The Geochemical Context of Gas Hydrate in the Eastern Nankai Trough   总被引:1,自引:0,他引:1  
Abstract. Geochemical studies for gas hydrate, gas and organic matter collected from gas hydrate research wells drilled at the landward side of the eastern Nankai Trough, offshore Tokai, Japan, are reported. Organic matter in the 2355 m marine sediments drilled to Eocene is mainly composed of Type III kerogen with both marine and terrigenous organic input. The gas hydrate-bearing shallow sediments are immature for hydrocarbon generation, whereas the sediments below 2100 mbsf are thermally mature. The origins of gases change from microbial to thermogenic at around 1500 mbsf.
Carbon isotope compositions of CH4 and CO2, and hydrocarbon compositions consistently suggest that the CH4 in the gas hydrate-bearing sediments is generated by microbial reduction of CO2. The δ13C depth-profiles of CH4 and CO2 suggest that the microbial methanogenesis is less active in the Nankai Trough sediments compared with other gas hydrate-bearing sediments where solid gas hydrate samples of microbial origin were recovered. Since in situ generative-potential of microbial methane in the Nankai Trough sediments is interpreted to be low due to the low total organic carbon content (0.5 % on the average) in the gas hydrate-bearing shallow sediments, upward migration of microbial methane and selective accumulation into permeable sands should be necessary for the high concentration of gas hydrate in discrete sand layers.  相似文献   

3.
Abstract. Bottom-simulating reflectors suggestive of the presence of methane hydrates are widely distributed below the ocean floor around Japan. In late 1999, drilling of the MITI Nankai Trough wells was conducted to explore this potential methane hydrate resource and a Tertiary conventional structure. The wells are located in the Northwest Pacific Ocean off Central Japan at a water depth of 945 m. A total of six wells were drilled, including the main well, two pilot wells, and three post survey wells at intervals of 10–100 m. All wells except the first confirmed the occurrence of hydrates based on logging-while-drilling, wire-line logging and/or coring using a pressure and temperature coring system in addition to conventional methods. Based on the various well profiles, four methane hydrate-bearing sand-rich intervals in turbidite fan deposits were recognized. Methane hydrates fill the pore spaces in these deposits, reaching saturation of up to 80 % in some layers. The methane hydrate-bearing turbiditic sand layers are less than 1 m thick, with a total thickness of 12–14 m. The bottom depth of high hydrate concentration correlates well with the depth of the bottom-simulating reflector. Based on these exploration results, the Japanese government inaugurated a 16-year methane hydrate exploitation program in 2001.  相似文献   

4.
Abstract: Stratigraphic controls on the formation and distribution of gas hydrates were examined for sediments from a BH-1 well drilled in the landward slope of the Nankai Trough, approximately 60 km off Omaezaki, Japan. Three lithologic units were recognized in the 250 m-thick sequence of sediments: Unit 1 (0–70 mbsf) consists of calcareous silt and clay with thin volcanic ash layers, Unit 2 (70–150 mbsf) consists of calcareous silt and clay with volcanic ash and thin sand layers, and Unit 3 (150–250 mbsf) consists of weakly consolidated calcareous silt and clay with thick and frequent sand layers. Soupy structures and gas bubbles in the sediments indicate the presence of two hydrate zones between 40 and 130 mbsf and below 195 mbsf. Nannofossil biostratigraphy and magnetostratigraphy indicate that the sequence recovered at the BH-1 well is mostly continuous and represents sediments deposited from 0 to 1.5 Ma. Calculation of the sedimentation rate reveals a condensed section between 65 and 90 mbsf. The inferred distribution of gas hydrates in the BH-1 well appears to be strongly controlled by the stratigraphy and lithology of the sediments. Thick, gently inclined sand layers in Unit 3 provide a conduit for the migration of gases from deeper regions, and are considered responsible for the formation of the hydrate zone below 195 mbsf. At shallower levels, thin, gently inclined sand layers are also considered to allow for the migration of gases, leading to the formation of the upper hydrate zone between 40 and 130 mbsf. The overlying sub-horizontal silt and clay of the condensed section, truncating the underlying gently inclined sand and silt/clay layers, may provide an effective trap for gases supplied through the sand layers, further contributing to hydrate formation in the upper hydrate zone.  相似文献   

5.
Abstract. For the purpose of development of methane hydrate, occurring in the deep marine subsurface, as a resource, the most important issue is to understand the methane hydrate system (generation, migration and accumulation) as well as to delineate the methane hydrate reservoir properties. We have applied the Amplitude Versus Offset (AVO) analysis to the seismic data acquired in the Nankai Trough, offshore Japan, in order to confirm the occurrence of gas just below the methane hydrate-bearing zone, assuming that gas will show a so-called Class-3 AVO response. Knowledge of the amount and occurrence of gas in the sediment below methane hydrate-bearing zone is one of the keys to understand the methane hydrate system.
We have utilized the qualitative analysis of AVO methodology to delineate how gas is located below the BSR, which is thought to be the reflection event from the interface between the methane hydrate-bearing zone and the underlying gas-bearing zone. In the region of MITI Nankai Trough Well PSW-3, we observe two BSRs separated by 25 ms. After AVO modeling using well data, we applied AVO attribute analysis and attribute crossplot analysis to the seismic data. Finally we applied an offset-amplitude analysis to CMP gather data at specific locations to confirm the results of AVO attribute analysis. The AVO analysis shows that there is very little gas located in the underlying sediment below methane hydrate-bearing zone. This result supports the fact that we could not obtain any clear evidence of gas occurrence just below the methane hydrate-bearing zone in the Nankai Trough well drilling.  相似文献   

6.
Abstract. The MITI Nankai Trough wells were drilled offshore Japan in the Tokai area in 1999 and 2000. The occurrence of methane hydrate was confirmed by various indicators in the borehole logs and from core data. These findings have a large impact on potential future Japanese energy resources and other related-scientific interests.
We first tried to find the methane hydrate-bearing zones using interval velocities derived from NMO velocity analysis. However, this analysis produced poor resolution. To achieve a more detailed delineation of the gas hydrate- and gas-bearing zones, we executed a seismic impedance inversion calibrated by the logs from two of the MITI Nankai Trough wells. Although these two wells are only about 90 m apart, we were able to produce an impedance section with fine detail by adopting a simple initial model and incorporating physical properties of the methane hydrate-bearing zones. The locations of the methane hydrate-bearing zones are readily apparent in the final section.  相似文献   

7.
Abstract: Interstitial waters extracted from the sediment cores from the exploration wells, “BH‐1” and “MITI Nankai Trough”, drilled ~60 km off Omaezaki Peninsula in the eastern Nankai Trough, were analyzed for the chloride and sulfate concentrations to examine the depth profiles and occurrence of subsurface gas hydrates. Cored intervals from the seafloor to 310 mbsf were divided into Unit 1 (~70 mbsf, predominated by mud), Unit 2 (70–150 mbsf, mud with thin ash beds), Unit 3 (150–250+ mbsf, mud with thin ash and sand), and Unit 4 (275–310 mbsf, predominated by mud). The baseline level for Cl “concentrations was 540 mM, whereas low chloride anomalies (103 to 223 mM) were identified at around 207 mbsf (zone A), 234–240 mbsf (zone B), and 258–265 mbsf (zone C) in Unit 3. Gas hydrate saturation (Sh %) of sediment pores was calculated to be 60 % (zone A) to 80 % (zones B and C) in sands whereas only a few percent in clay and silt. The total amount of gas hydrates in hydrate‐bearing sands was estimated to be 8 to 10 m3 of solid gas hydrate per m2, or 1.48 km3 CH4 per 1 km2. High saturation zones (A, B and C) were consistent with anomaly zones recognized in sonic and resistivity logs. 2D and high‐resolution seismic studies revealed two BSRs in the study area. Strong BSRs (BSR‐1) at ~263 mbsf were correlated to the boundary between gas hydrate‐bearing sands (zone C) and the shallower low velocity zone, while the lower BSRs (BSR‐2) at~289 mbsf corresponded to the top of the deeper low velocity zone of the sonic log. Tectonic uplift of the study area is thought to have caused the upward migration of BGHS. That is, BSR‐1 corresponds to the new BGHS and BSR‐2 to the old BGHS. Relic gas hydrates and free gas may survive in the interval between BSR‐1 and BSR‐2, and below BSR‐2, respectively. Direct measurements of the formation temperature for the top 170 m interval yield a geothermal gradient of ~4.3d?C/ 100 m. Extrapolation of this gradient down to the base of gas hydrate stability yields a theoretical BGHS at~230 mbsf, surprisingly ~35 m shallower than the base of gas hydrate‐bearing sands (zone C) and BSR‐1. As with the double BSRs, another tectonic uplift may explain the BGHS at unreasonably shallow depths. Alternatively, linear extrapolation of the geothermal gradient down to the hydrate‐bearing zones may not be appropriate if the gradient changes below the depths that were measured. Recognition of double BSRs (263 and 289 mbsf) and probable new BGHS (~230 mbsf) in the exploration wells implies that the BGHS has gradually migrated upward. Tectonically induced processes are thought to have enhanced dense and massive accumulation of gas hydrate deposits through effective methane recycling and condensation. To test the hypothetical models for the accumulation of gas hydrates in Nankai accretionary prism, we strongly propose to measure the equilibrium temperatures for the entire depth range down to the free gas zone below predicted BGHS and to reconstruct the water depths and uplift history of hydrate‐bearing area.  相似文献   

8.
Abstract. Simulation experiments with a one-dimensional static model for formation of methane hydrate are used to demonstrate models of hydrate occurrence and its generation mechanism for two end-member cases. The simulation results compare well with experimental data for two natural examples (the Nankai Trough and the Blake Ridge).
At the MITI Nankai Trough wells, the hydrate occurrence is characterized by strongly hydrated sediments developing just above the BGHS. Such occurrence can be reproduced well by simulation in which the end-member case of upward advective fluid flow from below the BGHS is set. The strongly hydrated sediments is formed by oversaturated solution with free gas which directly enters the BGHS by the upward advective fluid flow. The recycling of dissociated methane of preexisting hydrate also contributes to the increase of hydrate saturation.
At the Site 997 in the Blake Ridge area, the hydrate occurrence is characterized by thick zone with poorly hydrated sediments and no hydrate zone developing above the hydrate zone. Such occurrence can be reproduced well by simulation in which the end-member case of in-situ biogenic production of methane in the sediment of methane hydrate zone is set. The distribution pattern of hydrate saturation is basically controlled by that of TOC. However, the hydrate concentration near the bottom of the hydrate zone is increased by the effect of recycling of dissociated methane of pre-existing hydrate. No hydrate zone expresses the geologic time needed until the local concentration of methane exceeds the solubility by gradual accumulation of in-situ biogenic methane with burial.  相似文献   

9.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world’s methane and accounting for a third of Earth’s mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate-related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH4–CO2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so-called “four-in-one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near-surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.  相似文献   

10.
中国近海天然气水合物找矿前景   总被引:38,自引:3,他引:38  
天然气水合物是一种新型能源,在海底沉积物和陆上永远冻土带中均有广泛分布。西太平洋是全球三大天然气水合物成矿带之一,在其中已发现许多水合物矿床或矿点。中国近海,包括南海、东海和台湾东部海域,具备良好的天然气水合物成矿条件和找矿前景,并已在这些海域中发现了一系列的找矿标志。南海的西沙海槽、台湾西南陆坡和台西南盆地、笔架南盆地及其东缘增生楔、东沙群岛东南坡、南部陆坡区,东海的冲绳海槽和台湾东北部海域是中国近海最有利的天然气水合物找矿远景区。  相似文献   

11.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

12.
祁连山冻土区天然气水合物及其基本特征   总被引:14,自引:0,他引:14  
2008年11月5日, 由中国地质科学院矿产资源研究所、勘探技术研究所和青海煤炭地质局105勘探队施工的“祁连山冻土区天然气水合物科学钻探工程”DK-1孔取得重大突破, 成功钻获天然气水合物实物样品。这是我国冻土区首次钻获并检测出的天然气水合物实物样品, 也是世界上第一次在中低纬度高原冻土区发现的天然气水合物, 具有重要的科学、经济和环境意义。目前钻获的天然气水合物均产于冻土层之下, 产出深度133~396 m, 其层位属于中侏罗统江仓组。水合物以薄层状、片状、团块状赋存于粉砂岩、泥岩、油页岩的裂隙中, 或以浸染状赋存于细粉砂岩的孔隙中。祁连山冻土区天然气水合物具有埋深浅、冻土层 薄、气体组分复杂、以煤层气为主等特征, 应是一种新类型水合物。  相似文献   

13.
祁连山冻土区天然气水合物现场识别方法   总被引:1,自引:0,他引:1  
天然气水合物是一种赋存在低温、高压条件下,陆上永久冻土区和海底沉积物中的规模巨大的新型能源。在冻土区的天然气水合物研究过程中,钻探取样和天然气水合物岩芯研究仍是识别和推断天然气水合物最直接有效的方法。因此,如何在钻探现场快速有效地识别出天然气水合物及相关异常特征就显得极其重要。近几年在祁连山天然气水合物勘探过程中,探索性地总结出适用于冻土区的天然气水合物现场识别方法,主要包括肉眼观测、孔口气涌观测、岩芯红外测温、岩芯裂隙孔隙水盐度测定、岩芯气体解析与组分测定和岩芯次生构造与伴生矿物鉴别等方法。利用该套现场识别方法和随钻岩芯编录,有效地查明了祁连山冻土区天然气水合物在岩芯中的产状和分布特征,为该区天然气水合物资源评价和试开采试验提供了重要依据。  相似文献   

14.
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO42-, δ18O and δD. The baselines for the Cl- concentration and δ18O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18O anomalies gives results of up to 80 % in sand, and shows that the δ18O baseline is not consistent with the Cl" baseline. The δ18O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18O are responsible for the increase in the δ18O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation.  相似文献   

15.
中国海域的天然气水合物资源   总被引:12,自引:7,他引:5  
天然气水合物是甲烷等天然气在高压、低温条件下形成的冰状固体物质。据估算,全球天然气水合物中碳的含量等于石油、煤等化石能源中碳含量的2倍。在人类面临化石能源即将枯竭的时候,各国科学家和政府都把目光投向这一未来能替代化石能源的新能源。新生代构造演化历史、沉积条件、沉积环境等显示,南海具有生成和蕴藏巨大天然气水合物资源的条件;南海海域的地震反射剖面多处显示存在BSR反射波;2007年已钻探见到水合物样品。东海冲绳海槽在第四纪的沉积速率高(10~40cm/ka),槽坡存在泥底辟构造和断裂活动,从上新世以来发生过两次构造运动,这些对天然气水合物的形成是十分有利的;因此,中国海域的天然水合物资源是十分丰富的,在不远的将来它可能成为新的替代能源。  相似文献   

16.
天然气水合物发育的构造背景分析   总被引:1,自引:0,他引:1  
大量的钻孔资料和地震剖面显示主动大陆边缘的增生楔和被动大陆边缘的俯冲-增生楔、断裂-褶皱系、底辟构造或泥火山、滑塌构造、海底扇、"麻坑"构造和陆地多年冻土区等多种地质构造背景是形成天然气水合物的有利场所,可形成构造圈闭型天然气水合物矿藏。这些地质构造背景一方面大多是深部热成因气、生物成因气或混合成因气体或流体向上运移到海底的通道,形成天然气水合物矿藏;另一方面也可能造成天然气水合物的温压环境改变,致使天然气水合物分解。海底滑塌亦可能是天然气水合物分解所致,是潜在的地质灾害。  相似文献   

17.
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.  相似文献   

18.
沉积物粒度对水合物形成的制约:来自IODP 311航次证据   总被引:1,自引:0,他引:1  
对取自IODP 311航次(东北太平洋Cascadia大陆边缘)所有5个站位、采样间距约为1.5 m的614件沉积物样品,利用Beckman Coulter LS 230激光粒度仪进行了沉积物粒度分析,获得了沉积物粒度随深度变化特征,进而与水合物层位的替代指标进行了位置对比,这些指标包括特殊沉积构造(soupy和mousse like构造)、测井数据(LWD)推算出来的水合物饱和度(Sh)、岩芯红外图像和实际钻取的含水合物沉积物等。发现沉积物粒度分别为31~63 μm和63~125 μm的2组较粗粒径的沉积物数量变化增多的位置与水合物出现层位之间存在较好的位置对应关系。如在U1326站位海底以下5~8 m、21~26 m、50~123 m、132~140 m、167~180 m、195~206 m、220~240 m深度位置出现了沉积物粒度明显偏向粗粒的趋势,而这些位置正好对应于大多数特殊沉积构造出现的深度,也对应于水合物饱和度(Sh)值相对较高的深度,并与一些实际钻取的赋含水合物的浊积沙层观察结果一致。因此,初步研究后认为,沉积物粒度在水合物形成过程中扮演了重要角色,天然气水合物可能偏向形成于粒度大于31 μm的粗粒沉积物中。    相似文献   

19.
Presented here are halogen concentrations (Cl, Br and I) in pore waters and sediments from three deep cores in gas hydrate fields of the Nankai Trough area. The three cores were drilled between 1999 and 2004 in different geologic regions of the northeastern Nankai Trough hydrate zone. Iodine concentrations in all three cores increase rapidly with depth from seawater concentrations (0.00043 mmol/L) to values of up to 0.45 mmol/L. The chemical form of I was identified as I, in accordance with the anaerobic conditions in marine sediments below the SO4 reduction depth. The increase in I is accompanied by a parallel, although lesser increase in Br concentrations, while Cl concentrations are close to seawater values throughout most of the profiles. Large concentration fluctuations of the three halogens in pore waters were found close to the lower boundary of the hydrate stability zone, related to processes of formation and dissociation of hydrates in this zone. Generally low concentrations of I and Br in sediments and the lack of correlation between sediment and pore water profiles speak against derivation of I and Br from local sediments and suggest transport of halogen rich fluids into the gas hydrate fields. Differences in the concentration profiles between the three cores indicate that modes of transportation shifted from an essentially vertical pattern in a sedimentary basin location to more horizontal patterns in accretionary ridge settings. Because of the close association between organic material and I and the similarity of transport behavior for I and CH4, the results suggest that the CH4 in the gas hydrates also was transported by aqueous fluids from older sediments into the present layers.  相似文献   

20.
多孔介质中天然气水合物稳定性的实验研究进展   总被引:8,自引:0,他引:8  
勘探表明天然气水合物多产出于细碎屑沉积物中,其分布和赋存形式受温度、压力、水化学条件等多种物理化学因素的影响。前人的实验研究表明不同孔径尺度中的甲烷水合物稳定性有别于块状、层状水合物,同时孔隙表面的润湿性也是影响因素之一。在综合分析前人研究成果的基础上,系统阐述了孔隙的孔径、孔隙内表面润湿性对所含天然气水合物稳定性的影响规律,总结了可能的内在机理;并指出了当前应当尽快建立包括空间效应、温度、压力和组分等因素的综合天然气水合物相图,查明含天然气水合物沉积物的孔隙结构和表界面特征,建立天然气水合物的稳定性模型,将有助于精确预测天然气水合物的分布和规模,对于水合物开发和甲烷存储技术的研发也有着重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号