首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 526 毫秒
1.
热带太平洋-印度洋海温异常综合模对南亚高压的影响   总被引:15,自引:5,他引:15  
杨辉  李崇银 《大气科学》2005,29(1):99-110
从综合考虑热带太平洋和印度洋海温异常特征出发,研究了热带太平洋-印度洋海温异常综合模对南亚高压的影响.当热带太平洋-印度洋海温异常综合模为正位相(西印度洋和东太平洋海温距平为正,东印度洋-西太平洋海温距平为负),南亚高压偏弱,位置偏东偏南;当热带太平洋-印度洋海温异常综合模为负位相(西印度洋和东太平洋海温距平为负,东印度洋-西太平洋海温距平为正),南亚高压偏强,位置偏西偏北.热带太平洋-印度洋海温异常综合模影响南亚高压主要通过三种机制:一是通过影响亚洲季风从而影响了降水潜热形成的大气加热场分布,在正(负)位相年,青藏高原大气热源为负(正)异常,因此青藏高原上空空气上升减弱(加强),南亚高压偏弱(偏强);南海季风和热带辐合带加强(减弱),菲律宾附近的大气热源加强(减弱),有利于上空青藏高原东南侧反气旋(气旋)式的距平环流,因此南亚高压偏东偏南(偏西偏北).二是热带太平洋-印度洋海温的纬向热力对比引起赤道纬向垂直(Walker)环流异常,必将引起高空纬向风异常,在正(负)位相年,南亚高压南部的印度洋高空会出现西(东)风异常,导致南亚高压偏弱(偏强).三是综合模的正(负)异常加强(减小)西印度洋经度范围的区域Hadley环流,其北侧伊朗高原上的异常下沉(上升)支,造成南亚高压偏弱(偏强),位置偏东偏南(偏西偏北).  相似文献   

2.
李崇银  黎鑫  杨辉  潘静  李刚 《大气科学》2018,42(3):505-523
本文基于观测资料和LICOM2.0模拟结果的分析研究,简要介绍讨论了太平洋—印度洋海温(异常)联合模(PIOAM)的存在、特征、演变及其影响等问题。热带太平洋—印度洋区域乃至全球范围的海表温度异常(SSTA)资料进行EOF分解,都清楚表明其第一分量在热带太平洋—印度洋的空间形态与太平洋—印度洋海温(异常)联合模(PIOAM)非常相似,说明PIOAM是热带太平洋—印度洋实实在在存在的一种海温异常模态。对应PIOAM的正、负位相,热带印度洋和西太平洋地区的夏季(JJA)850 hPa距平风场有近乎相反的异常流场形势;对流层低层的Walker环流支和亚洲夏季风都出现了不同特征的(近乎相反)异常;在PIOAM正(负)位相将使得100 hPa的南亚高压位置偏东(西)。对热带太平洋和印度洋温跃层曲面上的海温异常(为了方便将其称为SOTA)进行EOF分解,发现其第一模态也是一个三极子模态,即当赤道中西印度洋大部分海域与赤道中东太平洋大部分海域偏暖(偏冷)时,赤道东印度洋和赤道西太平洋大部分海域则偏冷(偏暖);它与太平洋—印度洋表层的PIOAM十分类似,也表明PIOAM在海洋次表层也是存在的。高分辨海洋环流模式LICOM2.0的模拟结果,无论是对太平洋—印度洋表层还是次表层的PIOAM的特征和演变都刻画得很好,这从另一个角度进一步说明PIOAM是热带太平洋—印度洋实际存在的一种海温变化模态。PIOAM正、负位相不仅对亚洲及西太平洋地区的天气气候有非常不一样的影响(不少地方有反向的特征),还会对南北美洲和非洲一些地区产生不同影响;而且其影响与单独的厄尔尼诺(El Ni?o)及印度洋偶极子(IOD)都不尽相同。  相似文献   

3.
热带太平洋-印度洋海温异常综合模的数值模拟   总被引:1,自引:0,他引:1  
通过数值模拟及结果的合成分析,对热带太平洋-印度洋异常海温综合模态的三维热力结构、动力结构及其发生发展的可能机制进行了研究.数值模拟结果的分析表明,太平洋、印度洋海温异常的综合模态在表层、次表层的表现都很明显,即在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高),该模态还存在着显著的年变化特征、年际变化特征以及年代际变化特征.数值模拟的合成分析结果表明,异常的海表风应力引起表层洋流异常,表层洋流异常及由其引起的海表高度异常可导致次表层海水环流的异常,海洋环流异常导致的平流热输送异常是海温形成异常综合模态的主要原因之一,垂直输送是形成次表层海温综合模态的主要原因.平流热输送过程对海表温度变异的贡献是:在事件发生到盛期阶段促进了次表层海温异常综合模态的形成,在盛期到消亡阶段次表层的平流过程阻碍其进一步发展;短波辐射是海洋的主要热力来源,海表面异常的净短波辐射通量、潜热通量是表层海温形成异常模态的主要热力学原因,异常的海表面净短波辐射通量、潜热通量、感热通量在到达盛期阶段后抑制其进一步发展.  相似文献   

4.
华莉娟  俞永强  尹宝树 《大气科学》2010,34(6):1046-1058
热带印度洋偶极子 (Indian Ocean Dipole) 是印度洋海域内海洋和大气环流年际变化的主要特征模态之一, 在热带海气耦合系统中起到非常重要的作用。同热带太平洋的ENSO现象类似, 热带印度洋偶极子也呈现出显著的不对称性。本文利用中国科学院大气物理研究所发展的全球海洋环流模式, 在观测风应力距平的强迫下, 评估了模式对热带印度洋季节变化、 热带印度洋偶极子 (IOD) 模态及其不对称性的模拟能力, 并且通过数值试验分析了IOD模态不对称性特征及其对气候平均态的影响。对照观测资料, 模式较好地再现了热带印度洋SST在季风驱动下的季节变化特征。在年际时间尺度上, 模式不仅能够再现IOD指数的变化趋势, 而且可以成功模拟出IOD模态的空间分布特征, 即表层和次表层海温在西印度洋表现为正异常, 在东印度洋表现为负异常。可见, 对于热带印度洋而言, IOD模态主要是对风应力异常的响应。热带印度洋海温与Niño3.4指数的相关性分析表明, 模式能够模拟出超前热带太平洋ENSO现象2~4个月时海温的偶极子型分布, 但是不能模拟出滞后ENSO现象2个月左右的全海盆增暖模态, 可能是因为模式试验中没有考虑热通量年际异常的强迫。同时, 模式模拟的IOD模态具有同观测结果相类似的不对称性, 进一步的敏感性试验表明风应力的不对称性对偶极子指数的不对称性贡献较小, 次表层及以下海温的不对称性可能主要受到海洋内部非线性动力过程的影响。通过数值试验, 本文还发现热带印度洋海温的不对称性对气候平均态会有影响, 而这种不对称性长期积累后, 会导致上层热带印度洋温度层结趋于稳定状态。  相似文献   

5.
利用GFDL CM2p1模式, 本文探讨了初始海温误差对印度洋偶极子(IOD)事件可预报性的影响. 当热带印度洋存在初始海温误差时, IOD预报发生了冬季预报障碍(WPB)现象和夏季预报障碍(SPB)现象. WPB发生与否与正IOD事件发展位相冬季的厄尔尼诺-南方涛动(ENSO)有关. 即当冬季存在ENSO时, IOD预测不发生WPB现象, 反之亦然. 相比之下, SPB发生与否和ENSO没有必然联系. 此外, 进一步探讨了最容易导致SPB现象的初始海温误差的主要模态, 指出该模态在热带印度洋上表现为东-西偶极子型, 这和前人研究中最容易导致WPB现象的初始海温误差模态相似. 当在热带印度洋上叠加这些初始海温误差后, 热带太平洋上出现了海表温度异常和风场异常, 进而通过大气桥和印尼贯穿流的作用影响热带印度洋, 使之在夏季出现了东-西偶极子型的海表温度异常, 该异常在Bjerknes作用下快速发展, 加强, 最终导致SPB现象的发生.  相似文献   

6.
本文利用NCEP/NCAR提供的大气环流资料和海表温度异常资料,在分析热带太平洋和印度洋海温异常与冬季大气环流之间关系的基础上提出了一个综合反映热带太平洋和印度洋海温异常的综合指数。分析表明,冬季太平洋和印度洋海温异常指数的值越大(小),东亚冬季风指数的值越大(小),东亚地区将出现异常的南(北)风的响应,东亚冬季风将越弱(强)。应用加热强迫影响热带环流的简单模式研究r热带太平洋印度洋异常海温对东亚冬季风影响的物理机制。结果表明,当冬季热带太平洋和印度洋海温异常指数处于正(负)位相时,西太平洋区域强迫出异常南(北)风。这是使得东亚冬季风偏弱(强)的重要原因之一。冬季热带太平洋和印度洋海温异常对东亚冬季风影响最为显著的关键区是赤道西太平洋。  相似文献   

7.
周秋林  梅士龙 《大气科学》2011,35(2):339-349
利用NOAA SST及NCEP/NCAR再分析资料, 研究了热带太平洋—印度洋海温异常综合模和南半球对流层大气之间的遥相关模态并对其进行了机制解释。首先通过相关和合成分析, 给出了遥相关的空间模态, 结果表明: 北半球秋、冬季, 在南半球对流层大气存在和热带太平洋—印度洋海温异常综合模密切联系的遥相关作用中心, 该中心的分布构成一列明显的从赤道中太平洋出发, 最终到达非洲中南部及赤道印度洋的Rossby波列, 将赤道太平洋、印度洋与南半球中高纬度大气连接起来, 起到了类似“大气桥” 的作用。而单纯IOD和单纯ENSO均难以在南半球对流层激发出遥相关波列, 进一步证实了两者共同作用的影响。其次, 利用行星波能量传播理论对两者之间的遥相关进行了机制分析, 发现纬向波数为1~3的大气行星波的能量传播是热带太平洋—印度洋海温异常综合模与南半球对流层大气之间遥相关的一种可能的联系方式。  相似文献   

8.
俞永强  宋毅 《大气科学》2013,37(2):395-410
在工业革命以来全球长期增暖趋势背景下,全球平均表面气温还同时表现出年代际变化特征,二者叠加在一起使得全球平均气温在某些年份增暖相对停滞(如1999~2008年)或者增暖相对较快(如1980~1998年).利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的耦合气候模式FGOALS-s2历史气候和典型路径浓度(RCPs)模拟试验结果研究了可能造成全球增暖的年代际停滞及加速现象的原因,特别是海洋环流对全球变暖趋势的调制作用.该模式模拟的全球平均气温与观测类似,即在长期增暖趋势之上,还叠加了显著的年代际变化.对全球平均能量收支分析表明,模拟的气温年代际变化与大气顶净辐射通量无关,意味着年代际表面气温变化可能与能量在气候系统内部的重新分配有关.通过对全球增暖加速和停滞时期大气和海洋环流变化的合成分析及回归分析,发现全球表面气温与大部分海区海表温度(SST)均表现出几乎一致的变化特征.在增暖停滞时期,SST降低,更多热量进入海洋次表层和深层,使其温度增加;而在增暖加速时期,更多热量停留在表层,使得大部分海区SST显著增加,次表层海水和深海相对冷却.进一步分析表明,热带太平洋表层和次表层海温年代际变化主要是由于副热带—热带经圈环流(STC)的年代际变化所致,然后热带太平洋海温异常可以通过风应力和热通量强迫作用引起印度洋、大西洋海温的年代际变化.在此过程中,海洋环流变化起到了重要作用,例如印度尼西亚贯穿流(ITF)年代际异常对南印度洋次表层海温变化起到关键作用,而大西洋经圈翻转环流(AMOC)则能直接影响到北大西洋深层海温变化.  相似文献   

9.
基于1979-2016年ERA-Interim再分析资料和CAM5.3模式,研究了2016年和1998年北大西洋海温异常对中国夏季降水以及大尺度环流的可能影响及其机制。结果表明,这两年前夏(6-7月)长江中下游及其以南地区降水均异常偏多,但1998年降水异常较2016年更为显著。后夏(8月),2016年长江以南地区降水异常偏多,长江-黄河流域降水异常偏少,而1998年降水异常分布与之相反。2016年和1998年夏季中国东部降水异常的差异与西北太平洋对流层低层异常反气旋以及欧亚中高纬度环流变化的共同作用直接相关。敏感性数值试验的结果表明,北大西洋海温异常的显著差异是导致2016年和1998年夏季中国东部降水以及大尺度环流异常存在明显差异的重要原因之一。一方面,北大西洋海温异常可以通过改变欧亚中高纬度环流进而对中国夏季降水产生影响。1998年北大西洋海温异常自热带至副极地呈类似"+ - +"型分布,这种海温异常型能够在前夏欧亚中高纬度地区激发出双阻型的环流异常响应。2016年北大西洋海温异常自热带至副极地呈相对弱的"- + -"型分布,欧亚中高纬度环流异常响应总体偏弱。另一方面,北大西洋海温异常还可以通过影响热带纬向环流进而对西北太平洋对流层低层异常反气旋起调制作用。1998年北大西洋海温异常对夏季西北太平洋异常反气旋起增强作用,这与热带印度洋-太平洋海温的强迫作用相协调。然而,2016年北大西洋海温异常则有利于西北太平洋异常反气旋的减弱,这与热带印度洋-太平洋海温的强迫作用相反。因此,在这3个大洋的协同作用下,2016年和1998年前夏西北太平洋异常反气旋均偏强,但前者的振幅弱于后者。在后夏,1998年西北太平洋对流层低层仍受异常反气旋控制,2016年则为异常气旋控制。   相似文献   

10.
研究了前期热带海温分布型对6月西北太平洋异常环流的影响。结果表明,奇异值分解(SVD)的前期夏季、秋季至冬季热带海洋第一模态呈现出印度洋全海盆一致型海温异常和东太平洋西伸显著的ENSO事件,该模态与6月西北太平洋反气旋(气旋)环流场没有明显的关联。在第二模态中,前期热带太平洋海表温度呈现为ENSO正位相向负位相转换特征,印度洋海表温度变化呈现出赤道东南印度洋(90~110 °E,10 °S~0 °)显著的准IOD事件的变化特征。而这一联合模态与6月西北太平洋异常反气旋(气旋)环流场有显著关联。关联的可能原因是前期海温为El Ni?o和正IOD时,横跨热带印度洋-太平洋的沃克环流的减弱导致在西太平洋-海洋大陆的负降水异常,在Matsuno-Gill效应下西北太平洋形成反气旋异常环流。同时由于两大洋的共同作用和局地海气相互作用使得该环流加强并维持到6月。   相似文献   

11.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   

12.
Initial errors in the tropical Indian Ocean (IO-related initial errors) that are most likely to yield the Spring Prediction Barrier (SPB) for La Ni?a forecasts are explored by using the CESM model. These initial errors can be classified into two types. Type-1 initial error consists of positive sea temperature errors in the western Indian Ocean and negative sea temperature errors in the eastern Indian Ocean, while the spatial structure of Type-2 initial error is nearly opposite. Both kinds of IO-related initial errors induce positive prediction errors of sea temperature in the Pacific Ocean, leading to under-prediction of La Ni?a events. Type-1 initial error in the tropical Indian Ocean mainly influences the SSTA in the tropical Pacific Ocean via atmospheric bridge, leading to the development of localized sea temperature errors in the eastern Pacific Ocean. However, for Type-2 initial error, its positive sea temperature errors in the eastern Indian Ocean can induce downwelling error and influence La Ni?a predictions through an oceanic channel called Indonesian Throughflow. Based on the location of largest SPB-related initial errors, the sensitive area in the tropical Indian Ocean for La Ni?a predictions is identified. Furthermore, sensitivity experiments show that applying targeted observations in this sensitive area is very useful in decreasing prediction errors of La Ni?a. Therefore, adopting a targeted observation strategy in the tropical Indian Ocean is a promising approach toward increasing ENSO prediction skill.  相似文献   

13.
殷永红  倪允琪 《气象学报》2001,59(4):459-471
采用 NCEP/NCAR的 1 979~ 1 998年逐月平均的海表温度及 1 0 0 0 h Pa风场资料 ,进行滤波和均方差计算 ,得到了热带太平洋、印度洋、大西洋海表温度 (SST)和风场的年际变化特征。用旋转主分量 (RPC)方法和投影法对热带三大洋海表温度距平 (SSTA)进行分析 ,得到了各大洋 SSTA演变的主要时空特征和相应的距平风场特征 ;并用相关分析研究热带三大洋与ENSO相关的特征 ,得到三大洋间的同期相关关系为 :印度洋 SSTA与赤道东太平洋 SSTA成正相关 ,而赤道东大西洋 SSTA与赤道东太平洋 SSTA成弱的负相关 ;赤道印度洋在落后于赤道东太平洋 3个月左右时正相关达到最大 ,赤道大西洋在超前于赤道东太平洋 6个月左右时负相关达到最大 ;热带印度洋和大西洋与 ENSO相关的分量对各自大洋海表温度年际变化的方差贡献数值相近 ,最大在 40 %以上 ,平均解释方差分别为 1 4%和 1 2 %。  相似文献   

14.
A quasi-global eddy permitting oceanic GCM, LICOM1.0, is run with the forcing of ERA40 daily wind stress from 1958 to 2001. The modelled Indonesian Throughflow (ITF) is reasonable in the aspects of both its water source and major pathways. Compared with the observation, the simulated annual mean and seasonal cycle of the ITF transport are fairly realistic. The interannual variation of the tropical Pacific Ocean plays a more important role in the interannual variability of the ITF transport. The relationshipbetween the ITF and the Indian Ocean Dipole (IOD) also reflects the influence of ENSO. However, the relationship between the ITF transport and the interannual anomalies in the Pacific and Indian Oceans vary with time. During some years, (e.g., 1994), the effect of a strong IOD on the ITF transport is more than that from ENSO.  相似文献   

15.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standard deviation calculation,the interannual variability of sea surface temperature (SST) and 1000 hPa wind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years (1979-1998).The characters of space-time evolution in SST anomalies (SSTA) for each ocean and corresponding wind anomaly field are acquired by using rotated principal component (RPC) and linear regression analysis methods.Using the method of correlation analysis.the characters of three tropical oceans correlated with ENSO are investigated.The contemporary correlation between the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there is a weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in the equatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in the equatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in the equatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components in tropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance in each ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums are all above 40%.  相似文献   

16.
Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.  相似文献   

17.
曾刚  孙照渤  林朝晖 《大气科学》2010,34(2):307-322
采用1950~2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋) 海表温度分别驱动NCAR CAM3全球大气环流模式, 进行了多组长时间积分试验, 对比观测资料, 讨论了这些海域海表温度异常 (SSTA) 对西北太平洋副热带高压年代际变化的影响。结果表明: 全球、 热带、 热带印度洋-太平洋和热带印度洋海表温度变化均对夏季西北太平洋副热带高压的年代际变化有重要作用, 即在这些海域的海表温度变化影响下, 西北太平洋副热带高压均在1970年代中后期发生了年代际变化, 其后副高面积增大、 强度增强、 位置偏西、 偏南, 这与观测结果较一致; 热带太平洋海表温度变化对夏季西北太平洋副热带高压的年代际变化也有重要作用, 在其作用下, 夏季西北太平洋副热带高压的强度、 面积在1960年代后期发生年代际变化, 南界在1970年代中后期发生年代际变化, 这些时段以后副高强度增强、 面积增大、 偏南; 热带印度洋海表温度驱动模拟的西北太平洋副热带高压变化比热带太平洋海表温度驱动模拟的副高更接近于观测结果, 且年代际变化更显著, 其差异的可能原因在于两区海表温度在1970年代中后期以后的年代际变化能在孟加拉湾〖CD*2〗中国东南沿海区域强迫产生的异常环流不同, 前者强迫产生出反气旋性环流异常, 有利于副高的增强、 面积增大和西伸, 而后者强迫产生出气旋性环流异常, 不利于副高的西伸; 热带太平洋和热带印度洋海表温度在1970年代中后期的冷、 暖年代际背景变化对夏季西北太平洋副热带高压年代际变化有重要作用; 热带外海表温度变化对西北太平洋副热带高压年代际变化作用较小。  相似文献   

18.
利用NCEP/NCAR再分析资料、全球海温海冰GISST 2.3b资料, 用EOF技术分析了热带太平洋海表温度的年际异常 (SSTA) 变化特征表明:可用Niño3指数表示热带太平洋SSTA, 并用该指数来讨论热带太平洋、热带印度洋SSTA间的关系。分季节分析表明:冬季Niño3指数与热带印度洋SSTA间的关系表现为热带印度洋整体相关系数为正的单极形态, 且1976年以后两者的关系减弱, 其原因是冬季为ENSO事件的盛期, 另外, 冬季西太平洋暖水区东移导致太平洋Walker环流上升支强盛处的东移, 造成两洋的垂直纬向环流耦合减弱。夏季两者关系表现为偶极形态 (热带西印度洋与Niño3指数同相变化, 热带东印度洋则相反), 但1976年以后两者的关系有所加强, 是因为夏季为偶极子盛期, 也是ENSO事件的发展期, 同时夏季西太平洋暖水区东移并未引起太平洋Walker环流上升支强盛处的明显东移, 且印度洋季风环流、太平洋Walker环流的上升支强盛处的强度增大了, 造成两洋的垂直纬向环流耦合更强烈。即1976年以后, 冬季热带两洋SSTA间的关系减弱了, 而夏季两者关系则变得更密切。  相似文献   

19.
The singular value decomposition (SVD) of air-sea interaction in the tropical western,central,and eastern Pacific,and the tropical Atlantic and Indian Oceans has been conducted by using theNCEP/NCAR 40-year reanalysis 1000 hPa monthly wind field and COADS monthly sea surfacetemperature (SST).Comparisons of the results suggest that these areas can be divided into threetypes from the viewpoint of air-sea interaction:tropical central-eastern Pacific belongs to monistictype,in which ENSO is the sole important process;tropical western Pacific and Indian Oceansbelong to dualistic type,in which in addition to ENSO.there should be an another importantprocess;tropical Atlantic Ocean belongs to pluralistic type,in which the process is complicatedand the ENSO cycle is not evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号