首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean—atmosphere—sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard—Oeschger events, may be internal instabilities of the climate system.  相似文献   

2.
Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer pe-riods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial,continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ^13C to drop by about 0.3‰ at deglaciation,followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80-100-ppmv atmospheric CO2 change.  相似文献   

3.
The Response of Arctic Sea Ice to Global Change   总被引:4,自引:0,他引:4  
The sea ice-covered polar oceans have received wider attention recently for two reasons. Firstly, the global conveyor belt circulation of the ocean is believed to be forced in the North and South Atlantic through deep water formation, which to a large degree is controlled by the variations of the sea ice margin and especially by the sea ice export to lower latitudes. Secondly, CO2 response experiments with coupled climate models show an enhanced warming in polar regions for increased concentrations of atmospheric greenhouse gases. Whether this large response in high latitudes is due to real physical feedback processes or to unrealistic simplifications of the sea ice model component remains to be determined. Coupled climate models generally use thermodynamic sea ice models or sea ice models with oversimplified dynamics schemes. Realistic dynamic-thermodynamic sea ice models are presently implemented only at a few modeling centers. Sensitivity experiments with thermodynamic and dynamic-thermodynamic sea ice models show that the more sophisticated models are less sensitive to perturbations of the atmospheric and oceanic boundary conditions. Because of the importance of the role of sea ice in mediating between atmosphere and ocean an improved representation of sea ice in global climate models is required. This paper discusses present sea ice modeling as well as the sensitivity of the sea ice cover to changes in the atmospheric boundary conditions. These numerical experiments indicate that the sea ice follows a smooth response function: sea ice thickness and export change by 2% of the mean value per 1 Wm-2 change of the radiative forcing.  相似文献   

4.
Air–sea ice–ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean–sea ice–atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean–sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.  相似文献   

5.
Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.  相似文献   

6.
The response of the Weddell Sea and Antarctic Peninsula to anthropogenic forcing simulated by a global climate model is analyzed. The model, despite its low resolution, is able to capture several aspects of the observed regional pattern of climate change. A strong warming and depletion of the sea ice cover in the western Weddell Sea contrasts with a slight cooling and a sea-ice extension in the eastern Weddell Sea. This simulated long-term climate change is modulated by interdecadal variability but also affected by some abrupt regional changes in the oceanic mixed layer depth. Between 1960 and 2030 a reorganization of the deep convection activity in the Weddell Sea sustains the opposition between the eastern and western Weddell Sea. The deep convection collapses in the western Weddell Sea in the 2030s. The sea ice retreat trend is then followed by an increase of the sea ice cover in the western Weddell Sea. In the eastern Weddell Sea another abrupt collapse of the deep convection activity occurs around 2080. This event is followed by a rapid cooling and sea ice extension during the next 20 years. Most of the surface changes are associated with large-scale atmospheric circulation changes that project on the dominant mode of natural variability but also with oceanic convection and circulation changes.  相似文献   

7.
We herein present the CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC), which has evolved from the CLIMBER-2 EMIC. The main difference with respect to CLIMBER-2 is its oceanic component, which has been replaced by a state-of-the-art ocean model, which includes an ocean general circulation model (GCM), a biogeochemistry module, and a state-of-the-art sea-ice model. Thus, CLIMBER-3α includes modules describing the atmosphere, land-surface scheme, terrestrial vegetation, ocean, sea ice, and ocean biogeochemistry. Owing to its relatively simple atmospheric component, it is approximately two orders of magnitude faster than coupled GCMs, allowing the performance of a much larger number of integrations and sensitivity studies as well as longer ones. At the same time its oceanic component confers on it a larger degree of realism compared to those EMICs which include simpler oceanic components. The coupling does not include heat or freshwater flux corrections. The comparison against the climatologies shows that CLIMBER-3α satisfactorily describes the large-scale characteristics of the atmosphere, ocean and sea ice on seasonal timescales. As a result of the tracer advection scheme employed, the ocean component satisfactorily simulates the large-scale oceanic circulation with very little numerical and explicit vertical diffusion. The model is thus suited for the study of the large-scale climate and large-scale ocean dynamics. We herein describe its performance for present-day boundary conditions. In a companion paper (Part II), the sensitivity of the model to variations in the external forcing, as well as the role of certain model parameterisations and internal parameters, will be analysed.  相似文献   

8.
Libin Ma  Bin Wang  Jian Cao 《Climate Dynamics》2020,54(9):4075-4093
Deep convection in polar oceans plays a critical role in the variability of global climate. In this study, we investigate potential impacts of atmosphere–sea ice–ocean interaction on deep convection in the Southern Ocean (SO) of a climate system model (CSM) by changing sea ice–ocean stress. Sea ice–ocean stress plays a vital role in the horizontal momentum exchange between sea ice and the ocean, and can be parameterized as a function of the turning angle between sea ice and ocean velocity. Observations have shown that the turning angle is closely linked to the sea-ice intrinsic properties, including speed and roughness, and it varies spatially. However, a fixed turning angle, i.e., zero turning angle, is prescribed in most of the state-of-the-art CSMs. Thus, sensitivities of SO deep convection to zero and non-zero turning angles are discussed in this study. We show that the use of a non-zero turning angle weakens open–ocean deep convection and intensifies continental shelf slope convection. Our analyses reveal that a non-zero turning angle first induces offshore movement of sea ice transporting to the open SO, which leads to sea ice decrease in the SO coastal region and increase in the open SO. In the SO coastal region, the enhanced sea-ice divergence intensifies the formation of denser surface water descending along continental shelf by enhanced salt flux and reduced freshwater flux, combined with enhanced Ekman pumping and weakened stratification, contributing to the occurrence and intensification of continental shelf slope convection. On the other hand, the increased sea ice in the open SO weakens the westerlies, enhances sea-level pressure, and increases freshwater flux, whilst oceanic cyclonic circulation slows down, sea surface temperature and sea surface salinity decrease in the open SO response to the atmospheric changes. Thus, weakened cyclonic circulation, along with enhanced freshwater flux, reduced deep–ocean heat content, and increased stability of sea water, dampens the open–ocean deep convection in the SO, which in turn cools the sea surface temperature, increases sea-level pressure, and finally increases sea-ice concentration, providing a positive feedback. In the CSM, the use of a non-zero turning angle has the capability to reduce the SO warm bias. These results highlight the importance of an accurate representation of sea ice–ocean coupling processes in a CSM.  相似文献   

9.
We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation — atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.  相似文献   

10.
Zhaomin Wang 《Climate Dynamics》2005,25(2-3):299-314
The McGill Paleoclimate Model-2 (MPM-2) is employed to study climate–thermohaline circulation (THC) interactions in a pre -industrial climate, with a special focus on the feedbacks on the THC from other climate system components. The MPM-2, a new version of the MPM, has an extended model domain from 90S to 90N, active winds and no oceanic heat and freshwater flux adjustments. In the MPM-2, there are mainly two stable modes for the Atlantic meridional overturning circulation (MOC) under the ‘present-day’ forcing (present-day solar forcing and the pre-industrial atmospheric CO2 level of 280 ppm). The ‘on’ mode has an active North Atlantic deep water formation, while the ‘off’ mode has no such deep water formation. By comparing the ‘off’ mode climate state with its ‘on’ mode analogue, we find that there exist many large differences between the two climate states, which originate from large changes in the oceanic meridional heat transports. By suppressing or isolating each process associated with a continental ice sheet over North America, sea ice, the atmospheric hydrological cycle and vegetation, feedbacks from these components on the Atlantic MOC are investigated. Sensitivity studies investigating the role of varying continental ice growth and sea ice meridional transport in the resumption of the Atlantic MOC are also carried out. The results show that a fast ice sheet growth and an enhanced southward sea ice transport significantly favor the resumption of the Atlantic MOC in the MPM-2. In contrast to this, the feedback from the atmospheric hydrological cycle is a weak positive one. The vegetation-albedo feedback could enhance continental ice sheet growth and thus could also favor the resumption of the Atlantic MOC. However, before the shut-down of the Atlantic MOC, feedbacks from these components on the Atlantic MOC are very weak.  相似文献   

11.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

12.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

13.
A coupled ice-ocean model of the Arctic is developed in order to study the effects of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulent closure scheme for vertical mixing. The model is forced by interannually varying atmospheric temperature and pressure data from 1980–1989, and spatially varying mean monthly precipitation and river runoffs. Salinity and fresh water fluxes to the ocean from ice growth, snow melt, rain, and runoffs are computed, with no artificial constraints on the ocean salinity. The modeled ice thickness is similar to the observed pattern, with the thickest ice remaining against the Canadian Archipelago throughout the year. The modeled ice drift reproduces the Beaufort gyre and Transpolar drift exiting through Fram Strait. The stable arctic halocline produced by the vertical mixing scheme isolates the surface from the Atlantic layer and reduces the vertical fluxes of heat and salinity. A sensitivity experiment with zero precipitation results in rapidly decreasing ice thickness, in response to greater ocean heat flux from a weakening of the halocline, while an experiment with doubled precipitation results in a smaller increase in ice thickness. A zero-runoff experiment results in a slower decrease in ice thickness than the zero-precipitation case, due to the decadal time scale of the transport of runoff in the model. The results suggest that decadal trends in both arctic precipitation and river runoffs, caused either by anthropogenic or natural climatic change, have the potential to exert broad-scale impacts on the arctic sea ice regime. Received: 6 February 1996 / Accepted: 4 April 1996  相似文献   

14.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

15.
Antarctica and global change   总被引:2,自引:0,他引:2  
W. F. Budd 《Climatic change》1991,18(2-3):271-299
The Antarctic region of the globe is of special importance for a wide range of studies of global change. The IGBP research activities needing special focus for global change should be multidisciplinary, should involve both the geosphere and the biosphere, and should be of global as well as local interest. There are a number of important Antarctic research topics which fit these criteria.A decrease of Antarctic sea ice has a positive feedback on global warming. Reduction in the sea ice also impacts on deep ocean circulation and can give a positive feedback to the increase of atmospheric carbon dioxide by the reduction of a deep ocean sink. Changes in the mass balance of the Antarctic ice sheet impact on global sea level. A unique historic record of past climate and global environmental changes is being obtained from deep core drilling in the Antarctic ice sheet. Decreases of stratospheric ozone are most pronounced over the Antarctic in spring. The impact of increases in ultraviolet radiation on the biosphere can be studied in the Antarctic as a precurser to possible changes developing elsewhere around the globe. Changes in the atmosphere and ocean circulations resulting from the decrease in Antarctic sea ice cover can have important effects on ocean surface temperatures which impact on the climates of the continents.These topics are discussed briefly and a number of Antarctic research areas are highlighted which build on existing or planned international programmes and which can make critical contributions to multidisciplinary studies of global change.  相似文献   

16.
Large-scale atmospheric patterns are examined on orbital timescales using a climate model which explicitly resolves the atmosphere–ocean–sea ice dynamics. It is shown that, in contrast to boreal summer where the climate mainly follows the local radiative forcing, the boreal winter climate is strongly determined by modulation of circulation modes linked to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) and the Northern/Southern Annular Modes. We find that during a positive phase of the AO/NAO the convection in the tropical Pacific is below normal. The related atmospheric circulation provides an atmospheric bridge for the precessional forcing inducing a non-uniform temperature anomalies with large amplitudes over the continents. We argue that this is important for mechanisms responsible for multi-millennial climate variability and glacial inception.  相似文献   

17.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

18.
The global ocean circulation with a seasonal cycle has been simulated with a two-and-a-half layer upper-ocean model. This model was developed for the purpose of coupling to an atmospheric general circulation model for climate studies on decadal time scales. The horizontal resolution is 4° latitude by 5° longitude and is thus not eddy-resolving. Effects of bottom topography are neglected. In the vertical, the model resolves the oceanic mixed layer and the thermocline. A thermodynamic sea-ice model is coupled to the mixed layer. The model is forced at the surface with seasonally varying (a) observed wind stress, (b) heat fluxes, as defined by an atmospheric equilibrium temperature, and (c) Newtonian-type surface salt fluxes. The second layer is coupled to the underlying deep ocean through Newtonian-type diffusive heat and salt fluxes, convective overturning, and mass entrainment in the upwelling regions of the subpolar gyres. The overall global distributions of mixed layer temperature, salinity and thickness are favorably reproduced. Inherent limitations due to coarse horizontal resolution result in large mixed-layer temperature errors near continental boundaries and in weak current systems. Sea ice distributions agree well with observations except in the interiors of the Ross and Weddell Seas. A realistic time rate of change of heat storage is simulated. There is also realistic heat transport from low to high latitudes.  相似文献   

19.
This study documents simulated oceanic circulations and sea ice by the coupled climate system model FGOALS-f3-L developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, under historical forcing from phase 6 of the Coupled Model Intercomparison Project(CMIP6). FGOALS-f3-L reproduces the fundamental features of global oceanic circulations, such as sea surface temperature(SST), ...  相似文献   

20.
Changes in meridional heat transports, carried either by the atmosphere (HTRA) or by the ocean (HTRO), have been proposed to explain the decadal to multidecadal climate variations in the Arctic. On the other hand, model simulations indicate that, at high northern latitudes, variations in HTRA and HTRO are strongly coupled and may even compensate each other. A multi-century control integration with the Max Planck Institute global atmosphere-ocean model is analyzed to investigate the relative role of the HTRO and HTRA variations in shaping the Arctic climate and the consequences of their possible compensation. In the simulation, ocean heat transport anomalies modulate sea ice cover and surface heat fluxes mainly in the Barents Sea/Kara Sea region and the atmosphere responds with a modified pressure field. In response to positive HTRO anomalies there are negative HTRA anomalies associated with an export of relatively warm air southward to Western Siberia and a reduced inflow of heat over Alaska and northern Canada. While the compensation mechanism is prominent in this model, its dominating role is not constant over long time scales. The presence or absence of the compensation is determined mainly by the atmospheric circulation in the Pacific sector of the Arctic where the two leading large-scale atmospheric circulation patterns determine the lateral fluxes with varying contributions. The degree of compensation also determines the heat available to modulate the large-scale Arctic climate. The combined effect of atmospheric and oceanic contributions has to be considered to explain decadal-scale warming or cooling trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号