首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

2.
EnvironmentalmagneticmeasurementsofmarinesedimentsfromAntarctica:implicationstopaleoclimatechangesduringthepast15kaHouHongmi...  相似文献   

3.
气候突变前兆信号对研究气候突变爆发方式、特征、细节过程以及未来气候预测有着极为重要的学术价值及社会意义.青天洞具有年纹层特征的石笋δ^18O记录显示,在新仙女木(YoungerDryas,YD)事件结束期间,季风约在11年内完成转型,但在结束前(11.64ka BP-11.54kaBP),季风变化存在2个数十年尺度次级波动,历时约97±7年.该期季风强度颤动与此前YD内部季风变化相比呈现低幅、高频特征,在整个过程中季风强度总体保持上升.且在11.59kaBP后显示出自相关增强.这些特征与最近洱海湖泊生态系统突变前频繁波动特征类似,说明高频、低幅波动可能反映不同动力系统接近其临界值,可作为突变的前兆信号.  相似文献   

4.
对青藏高原东北部共和盆地冬其剖面的化学元素与粒度分析表明,末次盛冰期以来区域冬夏季风总体上呈现此消彼长的关系,气候出现多次冷干-暖湿旋回。15.82 ka BP之前冬季风最强,夏季风最弱,为末次盛冰期时的冷干气候,但21 ka BP之前气候可能寒冷偏湿。15.82~9.5 ka BP夏季风明显增强,冬季风衰弱,气候明显转暖,其中老仙女木时期(14.7~13.7 a BP)和新仙女木时期(12.1~9.5 ka BP)气候相对冷干,而B-A时期(13.7~12.1 ka BP)气候相对暖湿。全新世以来冬夏季风出现多次波动,9.5~7.0 ka BP夏季风相对较强,气候相对暖湿;7.0~5.1 ka BP冬夏季风强弱交替频繁,气候出现冷干-暖湿旋回;5.1~2.7 ka BP夏季风总体较强,气候温暖湿润;2.7 ka BP 之后冬季风明显增强,气候趋于冷干。此外,区域冬夏季风演变过程与极地冰芯记录的冷暖事件大体一致,可以认为共和盆地气候变化是全球气候变化的区域响应。  相似文献   

5.
通过对江西沟风成沉积剖面的地球化学分析,并结合OSL年代、粒度和磁化率数据,探讨了末次冰消期以来青海湖南岸气候的演变。剖面常量元素氧化物含量呈SiO_2Al_2O_3CaOFe_2O_3MgOK_2ONa_2O变化特征,常量元素氧化物及化学元素综合参数与地层有较好的对应性。不同的环境指标对气候变化的敏感性不同,总体上看,地球化学元素的敏感性高,全新世以来粒度和磁化率的变幅较小,即使在全新世大暖期,其值变化都很小。地球化学元素记录所反映的气候变化过程如下。Ⅰ.末次冰消期~12 ka BP,13.2 ka BP前总体上呈相对温暖状态,可能受B/A暖期的影响,13.2~12 ka BP气候不断向干冷方向发展,寒冷程度不断加剧并在12 ka BP达到最强,可能反映出12 ka BP左右的新仙女木事件;Ⅱ.12~9 ka BP,气候呈波动回升状态,暖湿程度呈增加趋势,表现出温凉的气候变化特征;Ⅲ.9~4.5 ka BP,气候温暖湿润,与全新世大暖期相对应,该阶段水热组合达到最佳,但存在阶段性的变化;Ⅳ.4.5~2 ka BP,气候总体向冷干方向转变,3 ka BP前变化幅度较小,气候较温暖湿润,3~2 ka BP气候凉偏干。  相似文献   

6.
青海湖湖东风成剖面化学元素特征及其环境指示意义   总被引:2,自引:0,他引:2  
通过对青海湖湖东沙地风成沉积剖面化学元素特征的分析,结合光释光测年结果,并和已有研究进行对比,探讨了青海湖区12.5 ka BP以来的气候环境变化过程,将其划分为5个阶段:12.5 ka BP前气候寒冷干燥,青海湖应处于冰川消退的寒冷期,风沙活动强烈;12.5~11.9 ka BP气候向暖湿转变,其中12.2~11.9 ka BP发生一次寒冷事件,对应于新仙女木事件;11.9~8.0 ka BP气候冷暖波动频繁,期间出现了3次寒冷事件;8.0~2.6 ka BP是一个持续时间较长的温暖湿润期;2.6 ka BP至今,气候以干冷为主,与现代气候相近。  相似文献   

7.
As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much attention of the scientists for a long time. The precursors have done substantive researches by using the lake sediment, which deepen our understanding of the climate changes in this region. Although sand dunes and loess sediment are widely distributed around the lake, so far the researches on geochemical elements from aeolian sediment have been less reported. In this paper, we selected a typical aeolian profile on the east of Qinghai Lake. Based on systematic sampling and analysis of seven major geochemical elements, combined with OSL dating and previous researches, this paper discusses climate changes in the Qinghai Lake area since 12.5 ka B.P.. Our conclusions are: (1) Before 12.5 ka B.P., the climate in this region was dry, cold, and accompanied by strong wind-sand activities. (2) During 12.5–11.9 ka B.P., the climate became warm and wet. However, there was an abrupt climate cooling event during 12.2–11.9 ka B.P., which likely corresponded to the Younger Dryas event. (3) During 11.9–8.0 ka B.P., the climate fluctuated greatly and frequently from warm to cold, and three cooling events occurred. (4) During 8.0–2.6 ka B.P., the climate was warm and humid. (5) Since 2.6 ka B.P., similar to the modern climate, the climate was mainly dry and cold.  相似文献   

8.
对南京江北地区林峰桥剖面晚更新世末期以来的两个泥炭层有机碳同位素测定结果表明,上部泥炭层和下部泥炭层δ13C值皆较低(≤-23.79‰),部泥炭层的δ13C值明显高于下部泥炭层。结合其它研究可知,该区全新世大暖期稳定暖湿鼎盛阶段的校正年代约在8.2~7.0 ka B.P.,在此阶段前后,表现为持续时间相对较短的低温气候环境。12.8~12.1 cal.ka B.P. 该区气温高低波动频繁期。12.8~12.7 cal.ka B.P.和12.6~12.2 ka B.P.两时段气温较低;2.7~12.6 cal.ka B.P. 阶段气温较高。12.2~12.1 cal.ka B.P. 表现为Younger Dryas之后气候的迅速增暖,可视为该区全新世开始的标志。  相似文献   

9.
Holocene coastal evolution in New South Wales has been interpreted essentially as the unfolding of the impact of marine transgression. Sea level on this coast supposedly reached its present height at 6–6.5 ka, and varied < 1 m since then. The early Holocene rise of the sea has been considered the key factor (“forcing function”) in dune migration, coastal sand barrier development, and the evolution of estuaries. Episodic storminess during the late Holocene has been seen as an important, though secondary, factor in beach erosion and dune mobilisation. An alternate interpretation presented here challenges the concept of the marine transgression as the primary “forcing function”. It (a) attributes early Holocene dune mobilisation to climate rather than the rising sea; (b) shows that the sea reached its present level by 7 ka and rose to at least + 2 m until 1.5 ka; (c) links late Holocene dune activity to local disruption of vegetation rather than to regional episodic storminess; (d) demonstrates a fall of 2°C in sea surface temperature after 3 ka that coincides with the onset of barrier erosion; (e) recognises the imprint of at least three tsunamis in the coastal sedimentary record.  相似文献   

10.
Biogenic silica contents of sediments on the lower Selenga Delta and Buguldeika saddle in Lake Baikal show distinct fluctuations that reflect changes in diatom productivity, and ultimately, climate. The pattern of the upper 50 m of the section, dating from about 334 ka, is similar to that of the marine oxygen-isotope record, increasingly so as the younger sediments become progressively finer grained and less locally derived with time. The last two interglaciations are marked by biogenic silica abundances similar to those of the Holocene. The equivalent of marine oxygen-isotope stage 3 is distinctly intermediate in character between full glacial and full interglacial biogenic silica values. Following near-zero values during the last glacial maximum, biogenic silica began to increase at about 13 ka. The rise in biogenic silica to Holocene values was interrupted by an abrupt decrease during Younger Dryas time, about 11 to 10 14C ka.  相似文献   

11.
新仙女木事件在热带湖光岩玛珥湖的记录   总被引:12,自引:6,他引:12  
湖光岩玛珥湖沉积物总有机碳,总氮,总氢,生物硅等有机地球化学指标以及AMS^14C年代明确地指示了新仙女木事件在中国南方地区的存在,它不仅表现为降水的显著减少,而且表现为气温的降低,显示了凉干的气候环境,反映了季风系统在很短的时间内进行了大规模重组,夏季风强度显著减弱的事实,这为西北太平洋低续度区存在YD事件提供了新的来自于陆地的证据。  相似文献   

12.
This study used organic matter in oligotrophic Lake Constance (southern Germany) to reconstruct lake environment and to disentangle the multiple factors, such as climate change and human impacts, which influence sedimentation in large lakes. A sediment core from Upper Lake Constance, which represents 16,000 years of Late Glacial and Holocene lake history, was analysed for organic biomarkers, hydrogen index and elements calcium, strontium, and magnesium. Magnetic susceptibility was measured to establish a high-resolution stratigraphic framework for the core and to obtain further information about changes with respect to relative allochthonous versus autochthonous sedimentation. Dinosterol—a biomarker for dinoflagellates—and calcium have low concentrations in Younger Dryas sediments and consistently high concentrations between 10,500 and 7,000 cal. years BP. These variations are attributed to changes in lake productivity, but are not reflected in the proportion of total organic carbon within the sediment. During the Younger Dryas and between 6,000 and 2,800 cal. years BP, concentrations and accumulation rates of land-plant-derived C29-steroids (β-sitosterol, stigmastanol and stigmasterol), in combination with a relatively low HI, indicate periods of enhanced terrigenous input to the lake. For the Younger Dryas, higher runoff can be attributed to a cold climate, leading to decreased vegetation cover and increased erosion. After 6,000 cal. years BP, high terrestrial input may be explained by enhanced precipitation. Biomarker and HI results, in combination with archaeological studies, raise the question as to whether lakeshore settlements affected sedimentation in Upper Lake Constance between 6,000 and 2,800 cal. years BP.  相似文献   

13.
Thirty-six Coleoptera (beetle) taxa and other insects were identified from the late-glacial and early-Holocene sediments at Kråkenes Lake. Compared with other Scandinavian late-glacial sites, this is a rather sparse record. The water beetles found in the Allerod are characteristic of a poorly vegetated clear-water lake. The terrestrial fauna is indicative of dwarf-shrub and moss vegetation. A marked decline in the number of species at the start of the Younger Dryas was rather rapid, probably over less than 80 calendar yrs. No obligate tundra species replaced the Allerod fauna. Most of the Younger Dryas is virtually devoid of beetles. The increase in numbers and diversity of both aquatic and terrestrial species at the Younger Dryas/Holocene transition is very rapid. After an initial pioneer stage, beetles associated with dwarf-shrub heath and willow scrub appeared, but no obligate tree or forest taxa were recorded.Mutual Climatic Range (MCR) temperature reconstructions suggest that the Allerod was colder and more continental than present. The near absence of beetles in the Younger Dryas probably reflects very cold conditions. A rapid temperature rise at the start of the Holocene resulted in a warmer and more continental climate than present.  相似文献   

14.
通过分析河西走廊花海古湖泊沉积物中的盐类矿物组成,结合年代序列,重建了花海晚冰期以来湖泊演化过程及其对气候变化的响应。结果表明:晚冰期及新仙女木时期,花海湖泊以芒硝沉积为主,属硫酸盐型湖泊,湖水的盐度较高且周期性波动频繁;全新世早期(10.47 cal ka BP以前),湖泊以洪泛堆积和风成沉积为主,揭示了湖泊萎缩、甚至干涸;全新世早期至全新世中期(10.47~8.87 cal ka BP)盐类矿物以碳酸盐沉积为主,为碳酸盐型湖泊,湖水淡化,湖泊水位开始逐渐回升;全新世中期(8.87~5.50 cal ka BP)盐类矿物呈现一定的波动变化,其中,8.8 cal ka BP 时期盐类矿物以硫酸盐沉积为主,湖泊由碳酸盐型转化为硫酸盐型,湖水咸化,盐度升高;随后盐类矿物以碳酸盐沉积为主,湖泊由硫酸盐型转化为碳酸盐型,湖水盐度降低、湖泊扩张;全新世中晚期(5.50 cal ka BP以来)出现沉积间断,表明中晚全新世时期湖泊逐渐萎缩。在全新世期间,花海湖泊千年尺度演化过程揭示了该区域气候干湿状况受亚洲季风和西风共同控制的影响。  相似文献   

15.
This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100–12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400–2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100–12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years. This is the third in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

16.
Ostracodes document a series of late Quaternary climatic and limnologic changes within the Lake Winnebago basin of east-central Wisconsin. Using a 14 C, 137Cs, and 210Pb-based geochronology, Lake Winnebago ostracode abundances were compared to regional patterns of ostracode biogeography and the paleontological, sedimentological, and geochemical records of Elk Lake (Clearwater County), Minnesota, in order to interpret past temperature and hydrochemical changes in Lake Winnebago. Lake Winnebago sediments contain five major ostracode species, Candona ohioensis, Candona rawsoni, Cytherissa lacustris, Limnocythere verrucosa, and Physocypria pustulosa. In combination with sedimentology and geochronology, variations in the abundances of these species allow the late Quaternary record of the Lake Winnebago basin to be subdivided into five major climatic intervals: (1) glacial to post-glacial (15.5–11.0 ka), (2) cold and variable immediate post-glacial (11.0–10.4 ka), (3) warmer and wet early Holocene (10.4–7.8 ka), (4) warm but not particularly dry middle Holocene (7.8–4.2 ka), and (5) warm and moist late Holocene (4.2 ka-present).  相似文献   

17.
Millennial-scale climate variability has not been well documented in arid northwest China due to the scarcity of high-resolution, well-dated paleoclimate records. Here we present multi-proxy records from sediment cores taken in freshwater Hurleg Lake on the northeastern Tibetan Plateau, which reveal millennial-scale lake-level and climate variations over the past 8,000 years. This high-elevation region is very sensitive to large-scale climate change, thus allowing us to better understand Holocene climate variations in East Asia. The lake-level record, derived from lithology, magnetic mineralogy, carbonate isotopes, ostracode shell isotopes and trace elements, X-ray fluorescence (XRF), and gray scale data, indicates a highly variable and generally dry climate from 7.8 to 1 ka (1 ka = 1,000 cal year BP), and a relatively stable and wet climate after 1 ka. Superimposed on this general trend, six dry intervals at 7.6–7.2 ka, 6.2–5.9 ka, 5.3–4.9 ka, 4.4–3.8 ka, 2.7–2.4 ka, and 1.7–1.1 ka were detected from the high-resolution carbonate content and XRF data. The generally dry climate between 7.8 and 1 ka was almost synchronous with the decrease of East Asian and Indian monsoon intensities shortly after 8 ka. The six dry intervals can be correlated with weak monsoon events recorded in the East Asia and Indian monsoon regions, as well as the North Atlantic cold events. Our data suggest that millennial-scale monsoon variations could cause highly variable climate conditions in arid northwest China during the Holocene. These millennial-scale climate variations may reflect changes in solar variation and/or changes in oceanic and atmospheric circulation.  相似文献   

18.
Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Pla-teau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution. Here we present a high-resolution pollen record from a 40.92-m-long sediment core (DLH) taken from Dalianhai, a terminal lake situated in the Gonghe Basin, the northeast Tibetan Plateau for reconstructing the vegetation and climate history since the last deglacial on the basis of a chronology controlled by 10 AMS 14C dates on plant remains preserved in the core sediments. The pollen assemblages in DLH core can be partitioned into 6 pollen zones and each zone is mainly characterized by the growth and decline of tree or herb pollen percentage. During the periods of 14.8-12.9 ka and 9.4-3.9 ka, the subalpine arboreal and local herbaceous pollen increased, indicating the subalpine forest developed in the surrounding mountains and a desert steppe or typical steppe developed in Gonghe Basin under a relatively moister climate. During the periods of 15.8-14.8 ka, 12.9-9.4 ka and 3.9-1.4 ka, the forest shrank or disappeared according to different degrees of aridity, and the desert steppe degraded to a more arid steppe desert in the basin, indicating a dry climate. After 1.4 ka, vegetation type around Dalianhai was mainly dominated by steppe suggested by increased Artemisia. Our results suggested the climate history in this region was dry from 15.8-14.8 ka, humid from 14.8-12.9 ka and dry from 12.9-9.4 ka, after which the climate was humid during 9.4-3.9 ka, followed by dry conditions during 3.9-1.4 ka and humid conditions in the last 1.4 ka. The change of pollen percentage and the evolution of palaeovegetation in Dalianhai since the last deglacial were similar to those recorded in Qinghai Lake. The forest expanded in the mountains around Dalianhai during the B?l-ling-Aller?d period, shrank during the Younger Dryas and the early Holocene, then it devel-oped and reached its maximum in the mid-Holocene. During the late Holocene, the vegetation began to shrink till disappearance. However, the timing of forest expansion in the Holocene lagged behind that of Qinghai Lake, and this spatial heterogeneity was probably caused by the different forest species between these two places. The maximum of forest development in the mid-Holocene was inconsistent with the period of stronger summer monsoon in the early Holocene indicated by stalagmite records, the reason might be related to the complexity of vegetation response to a large-scale climatic change.  相似文献   

19.
Geochemical data and geophysical measurements from a 554-m ice-core from Taylor Dome, East Antarctica, provide the basis for climate reconstruction in the western Ross Embayment through the entire Wisconsinan and Holocene. In comparison with ice cores from central East and West Antarctica, Taylor Dome shows greater variance of temperature, snow accumulation, and aerosol concentrations, reflecting significant variability in atmospheric circulation and air mass moisture content. Extreme aridity during the last glacial maximum at Taylor Dome reflects both colder temperatures and a shift in atmospheric circulation patterns associated with the advance of the Ross Sea ice sheet and accounts for regional alpine glacier retreats and high lake levels in the Dry Valleys. Inferred relationships between spatial accumulation gradients and ice sheet configuration indicate that advance of the Ross Sea ice sheet began in late marine isotope stage 5 or early stage 4. Precise dating of the Taylor Dome core achieved by trace-gas correlation with central Greenland ice cores shows that abrupt deglacial warming at Taylor Dome was near-synchronous with the ∼14.6 ka warming in central Greenland and lags the general warming trend in other Antarctic ice cores by at least 3000 years. Deglacial warming was following by a warm interval and transient cooling between 14.6 and 11.7 ka, synchronous with the Bølling/Allerød warming and Younger Dryas cooling events in central Greenland, and out of phase with the Antarctic Cold Reversal recorded in the Byrd (West Antarctica) ice core. Rapid climate changes during marine isotope stages 4 and 3 at Taylor Dome are similar in character to, and may be in phase with, the Northern Hemisphere stadial–interstadial (Dansgaard–Oeschger) events. Results from Taylor Dome illustrate the importance of obtaining ice cores from multiple Antarctic sites, to provide wide spatial coverage of past climate and ice dynamics.  相似文献   

20.
南极15ka以来海洋沉积物的环境磁学研究   总被引:4,自引:2,他引:4       下载免费PDF全文
通过对东南极普里兹湾陆坡区NP95-1及西南极长城湾NG93-1两柱样系统的环境磁学研究,获得了南极地区15.0~5.5kaB.P.以来的古气候变化序列。结果表明,磁学参数较好地记录了古气候变化及沉积环境变化的信息。NP95-1柱样较好地记录了Heinrich1事件、新仙女木事件以及波令-阿罗德暖期,其中Heinrich1事件发生于14.3kaB.P.,新仙女木冷期为11.7~10.3kaB.P.,10.3kaB.P.以后,南极地区进入全新世。在全新世,两柱样记录了在10.0kaB.P.及6.0kaB.P.前后两个暖期,其间夹有小幅气温下调的时段;6.0kaB.P.后,两柱样均有气候颤动变冷的记录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号