共查询到20条相似文献,搜索用时 15 毫秒
1.
R Vollmer 《Geochimica et cosmochimica acta》1976,40(3):283-295
The isotopic composition of Pb and Sr and the abundances of Rb, Sr, U, Th, and Pb were determined for whole rock samples from all major volcanic centres of the Cenozoic alkaline volcanism of Central and South Italy, together with some samples from the contemporaneous anatectic Tuscan volcanism. The Sr and Pb isotopic compositions of the alkaline rocks show a negative correlation combined with a regional trend: the ratios decrease from 0.711 in the north-west to 0.704 in the south-east, while the ratios increase from 18.7 to 20.0. Variations in both isotopic compositions are generally small throughout erupted rock sequences for any volcanic centre.The Pb and Sr isotopic abundance variations are interpreted on the basis of two alternative models, which correspond to two groups of geological processes: variations can result (i) from a time dependent development in subsystems with different or ratios or, (ii) from mixing of Sr or Pb with different isotopic compositions. Combining both Pb and Sr isotope abundance measurements it is shown that the source of each volcanic centre is formed by various degrees of mixing between two components. One component and the most southern Tuscan anatectic rocks most likely have a common source, whereas the other component of the mixing process is suggested to be a liquid fraction derived from a small degree of partial fusion of a hydrous mantle. Thus at least a two-stage evolution of the Italian alkaline rocks is indicated: first a mixing process leading to the formation of the parental material followed by differentiation processes leading to the formation of the erupted rock sequences.The geodynamic model which explains the data best is that of a lateral inhomogeneous mantle. The lateral inhomogeneities in the mantle would be the result of mixing between originally mantle and crustal derived material. The mixing process itself would not have any primary connection with the Quarternary volcanic activity. 相似文献
2.
Rb-Sr isotope data are presented for gneisses, migmatite neosome material and granitic and gabbroic intrusive rocks from the southern part of the Kongsberg sector, south Norway. The maximum age of the crust in this area appears to be ~1.6 AE. Two metamorphic episodes at ~1.5–1.6 AE and at ~1.1–1.2 AE are recognized. Initial 87Sr/86Sr ratios for the granitic rocks give evidence for reworking of sialic crust and indicate that approximately 1.6 AE old crust repeatedly acted as a source for granitic magmas for a timespan of ~0.5 AE. 相似文献
3.
Sm-Nd and Rb-Sr isotopic and geochemical systematics in Phanerozoic granulites from Fiordland,southwest New Zealand 总被引:2,自引:0,他引:2
M. T. McCulloch J. Y. Bradshaw S. R. Taylor 《Contributions to Mineralogy and Petrology》1987,97(2):183-195
Sm-Nd and Rb-Sr isotopic analyses are reported for granulite facies orthogneisses from Fiordland southwest New Zealand. Whole-rock samples define a Rb-Sr isochron age of 120±15 Ma and an initial 87Sr/86Sr ratio of 0.70391±4.
Nd values (at 120 Ma) show a relatively wide range of from –0.4 to 2.7 indicating decoupling of Sr-Nd isotope systems. Associated ultramafic rocks have initial 87Sr/86Sr ratios of from 0.70380 to 0.70430 and
Nd values of from 0.1 to 3.0. The different initial ratios suggest that the various intrusions, although contemporaneous, were not derived through fractionation of a single parent magma. A metasedimentary enclave incorporated during emplacement of the granulitic rocks preserves a Proterozoic isotopic signature with a measured
Nd(0) value of –10.2, 87Sr/86Sr ratio of 0.73679 and a T
Nd provenance age of 1490 Ma. The Rb-Sr whole rock age of the granulites is the same as obtained from recent U-Pb zircon dating (Mattinson et al. 1986) and is interpreted as the time of magmatic emplacement and essentially contemporaneous granulite facies metamorphism. Rb-Sr and Sm-Nd analyses of mineral systems indicate that the terrain had cooled below 300° C by 100 Ma providing further evidence that high grade metamorphism was of exceptionally short duration.Unmetamorphosed leucogabbros from the Early Cretaceous Darran Complex of eastern Fiordland have significantly higher
Nd values (3.9 to 4.6) and slightly lower 87Sr/ 86Sr (0.70373 to 0.70386) than the western Fiordland granulites. This indicates that the western and eastern Fiordland complexes are not correlative although both have geochemical similarities to Phanerozoic calc-alkaline island-arc suites. The Fiordland granulites are LREE enriched (LaN/ YbN=12 to 40) and have trace element characteristics (e.g. high K/Rb and low Rb/Sr ratios) typical of many Rb-depleted Precambrian granulite terrains. The Fiordland trace element trends, however are attributed to magmatic, not metamorphic processes, reflecting the character of the Early Cretaceous magma sources. The range of
Nd values, but uniform initial 87Sr/86Sr of the western Fiordland granulites is consistent with derivation of the parent Early Cretaceous magmas at least in part from a LREE enriched, low Rb/Sr protoliths of mid-to late-Paleozoic age. Partial melting of this protolith occurred during or immediately preceding a period of great crustal thickening culminating in rapid thickening of existing crust by 20 km following emplacement of the granulitic rocks. The rapid crustal thickening was probably a consequence of a collisional event in which an Early Cretaceous magmatic arc was over-ridden by one or more thrust sheets. 相似文献
4.
I. M. Gorokhov M. A. Semikhatov M. M. Arakelyants E. A. Fallick N. N. Mel’nikov T. L. Turchenko T. A. Ivanovskaya T. S. Zaitseva E. P. Kutyavin 《Stratigraphy and Geological Correlation》2006,14(3):260-274
Clay subfractions (SFs) of <0.1, 0.1–0.2, 0.2–0.3, 0.3–0.6, 0.6–2 and 2–5 μm separated from Middle Riphean shales of the Debengda Formation are studied using the TEM, XRD, K-Ar and Rb-Sr isotopic methods. The oxygen and hydrogen isotope compositions in the SFs are studied as well. The low-temperature illite-smectite is dominant mineral in all the SFs except for the coarsest ones. The XRD, chemical and isotopic data imply that two generations of authigenic illite-smectite different in age are mixed in the SFs. The illite crystallinity index decreases in parallel with size diminishing of clay particles. As compared to coarser SFs, illite of fine-grained subfractions is enriched in Al relative to Fe and Mg, contains more K, and reveals higher K/Rb and Rb/Sr ratios. The Rb-Sr age calculated by means of the leachochron (“inner isochron”) method declines gradually from 1254-1272 Ma in the coarsest SFs to 1038-1044 Ma in finest ones, while the K-Ar age decreases simultaneously from 1225–1240 to 1080 Ma. The established positive correlation of δ18O and δD values with dimensions of clay particles in the SFs seems to be also consistent with the mixing systematics. The isotopic systematics along with data on mineral composition and morphology lead to the conclusion that mixedlayer illite-smectite was formed in the Debengda shales during two periods 1211–1272 and 1038–1080 Ma ago. The first period is likely close to the deposition time of sediments and corresponds to events of burial catagenesis, whereas the second one is correlative with the regional uplift and changes in hydrological regime during the pre-Khaipakh break in sedimentation. 相似文献
5.
In this study, we present 87Rb/86Sr and 230Th/238U isotope analyses of glasses and phenocrysts from postcaldera rhyolites erupted between 150 to 100 ka from the Long Valley magmatic system. Both isotope systems indicate complex magma evolution with preeruptive mineral crystallization and magma fractionation, followed by extended storage in a silicic magma reservoir. Glass analyses yield a Rb-Sr isochron of 257 ± 39 ka, which can be explained by a feldspar-fractionation event ∼150 ky before eruption. Individual feldspar-glass pairs confirm this age result. A mineral 230Th-238U isochron in a low-silica rhyolite from the Deer Mountain Dome defines an age of 236 ± 1 ka, but the glass and whole rock do not lie on the isochron. U-Th fractionation of the rocks is controlled by the accessory minerals zircon and probably allanite, which crystallized at 250 ± 3 ka and 187 ± 9 ka, respectively. All major mineral phases contain accessory mineral phases; therefore, the mineral isochron represents a mixture of zircon and allanite populations. A precision of ±1 ka for the mixing array implies that the minor phases must have crystallized within this timescale. Longer periods of crystal growth would cause the mixing array to be less well defined. U-series data from other low- and high-silica rhyolites indicate younger accessory mineral crystallization events at ∼200 and 140 ka, probably related to the thermal evolution of the magma reservoir. These crystallization events are, however, only documented by the accessory minerals and had no further influence on bulk magma compositions. We interpret the indistinguishable age results from both isotope systems (∼250 ka) to record the fractionation of small magma batches by filter pressing from a much larger underlying magma volume, followed by physical isolation and extended storage at the top of the magma reservoir for up to 150 ky. 相似文献
6.
Helmut Schleicher Hans Joachim Lippolt Ingrid Raczek 《Contributions to Mineralogy and Petrology》1983,84(2-3):272-280
Rb-Sr mineral ages and Sr isotopic ratios were determined for several Permian rhyolites of the Schwarzwald, mainly by using mica-apatite pairs. Extrusion ages between_307+5 and 286+7 Ma were found (
Rb=1.42· 10–11 a–1, 2). The initial Sr isotopic ratios range from 0,710 to 0.7125, with one exception (St. Märgen: 0.706). The Rb-Sr age of the granite porphyry Schweighof in the Southern Schwarzwald is 323+4 Ma.Thus the subsequent volcanic activity of the Hercynian orogeny lasted nearly 20–30 Ma, starting in the Late Carboniferous and culminating in the Early Permian. The volcanic activity moved in time from South to North. In the Southern as well as the Northern Schwarzwald a hiatus of about 20 Ma exists between late orogenic plutonism and subsequent volcanism. The initial ratios lie on the crustal evolution line of Schwarzwald basement and favour, with the St. Märgen porphyry as exception, a crustal provenance of the volcanic magmas. 相似文献
7.
Rb-Sr isotope systematics of muscovite from Pan-African granitic pegmatites of Western and Northeastern Africa 总被引:1,自引:0,他引:1
D. Küster 《Mineralogy and Petrology》1995,55(1-3):71-83
Summary Rb-Sr investigations have been carried out on early-formed muscovite from three pegmatite fields of the late Proterozoic to early Phanerozoic Pan-African Belt. The individual mineral ages obtained are highly discordant for each pegmatite field. Using Best Isochron Diagrams, isochron construction of selected muscovite samples yielded geologically realistic ages of pegmatite formation: around 670 Ma for the Bayuda Desert pegmatites of northern Sudan, around 550 Ma for the Wamba pegmatites of central Nigeria, and around 465 Ma for the Majayahan pegmatites of northeastern Somalia. Initial Sr ratios obtained from isochron calculations have unrealistic values and cannot be used for petrogenetic interpretations.The geologically unrealistic young model ages of some of the muscovite samples are most probably attributed to open-system behaviour and post-crystallization loss of87Sr* from the respective minerals. The amounts of87Sr* losses have been approximated from the discrepancies between isotopically measured and theoretically calculated (from decay of Rb)87Sr* concentrations. The loss of87Sr* from the micas is variable in each pegmatite field. In none of the three cases can this unsystematic, post-emplacement, open-system behaviour be directly related to a particular, temporally confined, geologic event.
With 6 Figures 相似文献
Rb-Sr Isotopen-Systematik von Muskovit aus panafrikanischen Granit-Pegmatiten West-und Nordost-Afrikas
Zusammenfassung Rb-Sr Isotopen-Untersuchungen wurden an frühgebildetem Muskovit dreier Pegmatitfelder der spätproterozoischen bis frühphanerozoischen, panafrikanischen Mobilzone durchgeführt. Die jeweilig erhaltenen Muskovit-Modellalter sind für jedes Pegmatitfeld stark diskordant. Unter Benutzung von Best Isochron Diagrams ergaben Isochronen ausgesuchter Muskovit-Proben jedoch geologisch relevante Pegmatit-Bildungsalter: um 670 Ma für die Pegmatite der Bayuda Wüste im Nord-Sudan, um 550 Ma für die Pegmatite von Wamba in Zentral-Nigeria, und um 465 Ma für die Pegmatite von Majayahan in Nordost-Somalia. Die aufgrund der Isochronen-Berechnungen erhaltenen Sr-Initialverhältnisse haben allerdings unrealistische Werte und können nicht für petrogenetische Interpretationen herangezogen werden.Die geologisch ebenfalls unrealistischen, jungen Alter einiger der Muskovit-Proben sind sehr wahrscheinlich in offenen System-Verhältnissen und Verlust von87Sr* nach der Kristallisation der jeweiligen Minerale bedingt. Die Menge des Verlustes an87Sr* wurde annäherungsweise aufgrund der Unterschiede zwischen isotopisch gemessenen und anhand des Rb-Zerfalls theoretisch errechneten Gehalten an87Sr* bestimmt. Der Verlust der Glimmer an87Sr* ist innerhalb eines jeden Pegmatitfeldes variabel. Dieses unsystematische Vorkommen von post-kristallinen, offenen System-Verhältnissen kann in keinem der drei Fälle in direkte Beziehung gesetzt werden zu einem bestimmten, zeitlich begrenzten, geologischen Ereignis.
With 6 Figures 相似文献
8.
Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 ± 6 Ma and 166 ± 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nevertheless, an age of 156 ± 6 Ma is derived from the 238U-206Pb isotopic system from the purest mineral fractions (maskelynite and pyroxene). The concordance of these three ages suggest that the 238U-206Pb systematics of the purest Zagami mineral fractions have been minimally disturbed by alteration and impact processes, and can therefore be used to constrain the behavior of U and Pb in the Zagami source region. The μ value of the Zagami source region can be estimated, with some confidence from the 238U-206Pb isochron, to be 3.96 ± 0.02. Disturbance of the U-Pb isotopic systems means that this represents a minimum value. The μ value of the Zagami source is significantly lower than the μ values estimated for most basaltic magma sources from Earth and the Moon. This is surprising given the high initial 87Sr/86Sr ratio (0.721566 ± 82) and low initial εNd value (−7.23 ± 0.17) determined for Zagami that indicate that this sample is derived from one of the most highly fractionated reservoirs from any known planetary body. This suggests that Mars is characterized by a low bulk planet U/Pb ratio, a feature that is consistent with its relatively volatile-rich nature.The leachates contain terrestrial common Pb that was probably added to the meteorite during handling, curation, or sawing. The mineral fractions, particularly those with significant amounts of impact melt glass, contain a second contaminant. The presence of this contaminant results in Pb-Pb ages that are older than the crystallization age of Zagami, indicating that the contaminant is characterized by a high 207Pb/206Pb ratio. Such a contaminant could be produced by removal of single-stage Pb from a relatively high μ martian reservoir before ∼1.8 Ga, and therefore could be an ancient manifestation of hydrous alteration of martian surface material. 相似文献
9.
E. V. Sharkov V. F. Smol’kin V. B. Belyatskii A. V. Chistyakov Zh. A. Fedotov 《Geochemistry International》2006,44(4):317-326
The first Sm-Nd and Rb-Sr dates were obtained for the dynamometamorphic processes associated with the origin and evolution of the Moncha Tundra fault, Kola Peninsula, which separates two large Early Paleoproterozoic layered intrusions: the Monchegorsk Ni-bearing mafic-ultramafic intrusion and the Main Range massif of predominantly mafic composition. The fault belongs to the regional Central Kola fault system, whose age was unknown. The material for the dating included metamorphic minerals from blastomylonitic rocks recovered by structural borehole M-1. Mineralogical thermobarometry suggests that the metamorphism occurred at 6.9–7.6 kbar and 620–640°C, which correspond to the amphibolite facies. The Sr and Nd isotopic systems were re-equilibrated, and their study allowed us to date the dynamometamorphic processes using mineral isochrons. It was established that the Moncha Tundra fault, and, respectively, the whole Central Kola fault system appeared in the middle of Paleoproterozoic ~2.0–1.9 Ga, simultaneously with the Svecofennian orogen in the central part of the region and the Lapland-Kola orogen in its northeastern part. Another episode of dynamometamorphism that occurred at 1.60–1.65 Ga is envisaged. 相似文献
10.
Knowledge about the hydrochemical conditions of deep groundwater is crucial for the design and operation of geothermal facilities. In this study, the hydrochemical heterogeneity of the groundwaters in the Malm aquifer, Germany, is assessed, and reasons for the extraordinarily high H2S concentrations in the central part of the Bavarian Molasse Basin are proposed. Samples were taken at 16 sites, for a total of 37 individual wells, to analyze cations, anions, gas loading and composition. The hydrochemical characteristics of the Malm groundwater in the center of the Molasse Basin are rather heterogeneous. Although the groundwater in the central basin is dominated by meteoric waters, there is a significant infiltration of saline water from higher strata. Care has to be taken in the interpretation of data from geothermal sites, as effects of chemical stimulation of the boreholes may not be fully removed before the final analyses. The distribution of H2S in the gas phase is correlated to the gas loading of the water which increases in the central basin. Temperatures, isotopic data and the sulfur mass balance indicate that H2S in the central basin is related to thermochemical sulfate reduction (south of Munich) and bacterial sulfate reduction (north of Munich). 相似文献
11.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas. 相似文献
12.
Results of TIMS, SIMS and SEM analyses show that zircon and monazite in a high-grade paragneiss of the Ruhla Crystalline Complex, central Germany, were formed and/or altered during different stages of a tectono-metamorphic history between Early Devonian and Permian times. Detrital zircon cores of >460 Ma place an older limit on the age of anatexis, and show that the paragneiss sequence contains rocks at least as young as early Cambrian. Metamorphic zircon growth commenced at ~365 Ma, peaking at ~360–355 Ma at the same time that granite dykes were emplaced. In contrast, monazite in the paragneiss preserves little record of the metamorphic peak. Most monazite grains grew or were recrystallised in the Lower Carboniferous at ~339 Ma, contemporaneous with the emplacement of voluminous diorite and granite bodies. These intrusions and related tectonics caused some of the high-U zircon overgrowths to undergo moderate to severe Pb loss. A second Pb loss event, between 300 and 280 Ma, can be related to Late Carboniferous/Early Permian large-scale block faulting.Editorial responsibility: J. Hoefs 相似文献
13.
Carl E. Hedge Kiyoto Futa Celeste G. Engel Robert L. Fisher 《Contributions to Mineralogy and Petrology》1979,68(4):373-376
Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. 相似文献
14.
15.
16.
New U-Pb zircon data from a segregation pegmatite in the granitic gneiss at Glenfinnan yield discordant points which appear to be aligned along a chord on a concordia diagram with upper and lower intersection ages of 1,517±30 Ma and 556±8 Ma, respectively. The results are similar to published U-Pb zircon data from the granitic gneiss but the lower intersection age does not correspond to concordant ages of 455±3 Ma obtained for monazites from the segregation pegmatite and from paragneiss which hosts the granitic gneiss. The apparent U-Pb zircon chord also gives no indication of a 1,030±50 Ma (large sample) Rb-Sr whole rock isochron age for the granitic gneiss (Brook et al. 1976). A traverse of adjacent 5–8 cm thick slabs in the paragneiss yields a Rb-Sr errochron of 455±60 Ma which also does not agree with the U-Pb zircon lower intersection age. The scale of this Sr whole rock diffusion (ca. 10 cm) is not at variance with existing thermal, temporal and experimental constraints.A two episodic loss model has been applied to the zircon data from the segregation pegmatite, to the previously published zircon data on the granitic gneiss and to new U-Pb zircon data on the host paragneiss. The first lead loss event, if assumed to be in Grenville time, was computed to be strongest in the granitic gneiss and segregation pegmatite. For the three suites of zircon considered, primary ages converge in the 1,700–1,800 Ma range with a final disturbance event at ca. 490 Ma, i.e., close to a plausible prograde stage of Caledonian metamorphism.The zircons in both the granitic gneiss and the paragneiss are believed to have been derived from the ubiquitous early Proterozoic shields bordering the North Atlantic. Furthermore the above model is consistent with the hypothesis that the zircons in the granitic gneiss were largely derived from the paragneiss. However, the U-Pb zircon data are not inconsistent with new Sr-isotopic evidence which suggests an additional, possibly deeper source with lower 87Sr/ 86Sr ratios. 相似文献
17.
Lars E. Borg Larry E. NyquistHenry Wiesmann Young Reese 《Geochimica et cosmochimica acta》2002,66(11):2037-2053
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle. 相似文献
18.
Samples from metamorphosed pillowed basalts and related Besshi-type deposits occurring in the Sanbagawa belt of the Shikoku
Island, southwest Japan, have been analyzed for 87Sr/86Sr, 143Nd/144Nd and 40 K/40Ar. This is to investigate the tectonic settings in which the original submarine volcanism and associated Besshi-type mineralization
occurred, as well as the age of metamorphism. Eight whole-rock samples of the pillow lavas metamorphosed in pumpellyite-actinolite
facies conditions yield a Rb-Sr isochron age of 107 ± 15 Ma with an initial ratio of 0.70401 ± 0.00006, while they do not
define a Sm-Nd isochron. We interpret the results as the metamorphic age, an interpretation consistent with the previously
reported Rb-Sr whole-rock age for the Sanbagawa pelitic schists. The overall ranges of the initial epsilon values at T = 107 Ma are: ɛNd (T ) = +7.8 to +4.3; ɛSr(T ) = +2.2 to −7.0, suggesting that the most likely source for the pillowed basalts is depleted oceanic mantle, a conclusion
supported by the previous Pb isotope studies. The K-Ar ages determined for twelve mineral separates from the Besshi-type deposits
range from about 60 to 112 Ma, with a mean age of about 80 Ma, in agreement with the previous K-Ar and Ar-Ar data for the
Sanbagawa pelitic and basic schists. The youngest age, 60 Ma, was obtained for sericite from the Hinooku deposit metamorphosed
in pumpellyite- actinolite facies conditions, while the oldest one for hornblende from the spotted amphibolite in the immediate
vicinity of the Shiragayama deposit metamorphosed in albite-biotite grade. The oldest age, 112 Ma, is interpreted to date
the peak metamorphism, consistent with the Rb-Sr data, though a possibility of excess Ar cannot always be ruled out. In view
of the closure temperatures of muscovite (350 °C) in the biotite zone, it is suggested that our K-Ar age data (<about 80 Ma)
represent the age of the retrograde metamorphism or subsequent uplift. Datable microfossils found in the Sanbagawa belt of
Shikoku suggest that the submarine basaltic volcanism and related Besshi-type mineralization occurred in an oceanic basin
away from the trench region in Late Triassic (conodont) to Late Jurassic (radiolarian) times.
Received: 5 March 1997 / Accepted: 14 May 1998 相似文献
19.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean. 相似文献