首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Measurements of the sulfur dioxide (SO2) emission rate from three Guatemalan volcanoes provide data which are consistent with theoretical and laboratory studies of eruptive and shallow magma chamber processes. In particular, unerupted magma makes a major contribution to the measured SO2 emission rates at Santiaguito, a continuously erupting dacitic volcanic dome. Varying shallow magma convection rates can explain the variations in SO2 emission rates at Santiaguito. At Fuego, a basaltic volcano currently in repose, SO2 emission rate measurements are consistent with a high level magma body that is crystallizing and releasing volatiles. At Pacaya, a continuously erupting basaltic volcano, recent SO2 emission rate measurements support laboratory simulation studies of strombolian eruptions; these studies indicate that the majority of gas escapes during eruptions and little gas escapes between eruptions.Average SO2 emission rates over the last 20 years for Santiaguito, Fuego and Pacaya are 80, 160 and 260 Mg/d, respectively. On a global scale, these three volcanoes account for 1% of the annual global volcanic output of SO2. Santiaguito and Pacaya, together, emit 6% of the total annual SO2 emitted by continuously erupting volcanoes.Even though SO2 measurements at these volcanoes have been made infrequently and by different investigators, the collective data help to establish a useful baseline by which to judge future changes. A more complete record of SO2 emission rates from these volcanoes could lead to a better understanding of their eruption mechanisms and reduce the impact of their future eruptions on Guatemalan society.  相似文献   

2.
A dramatic short-term increase in seismicity and ground deformation took place at Rabaul Caldera on 19 September 1983, and marked the start of a period of frequent episodes of high seismic energy release and concurrent rapid ground deformation. Together with increased background levels of seismicity and ground deformation, these phenomena are interpreted as indications of higher rates of magma injection at shallow depths within the caldera, which greatly increases the likelihod of an eruption at Rabaul in the near future. A modest volume of magma, about 100 million m3, could be available for eruption from two shallow reservoirs, but a somewhat deeper and much larger magma body — residual from the latest major eruption about 1400 yr BP — may also exist beneath the caldera.  相似文献   

3.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

4.
HCl:SO2 mass ratios measured by open path Fourier transform spectroscopy (OP-FTIR) in the volcanic plume at Soufrière Hills Volcano, Montserrat, are presented for the second phase of dome building between November 1999 and November 2000. HCl:SO2 mass ratios of greater than 1 and HCl emission rates of greater than 400 t day–1 characterise periods of dome building for this volcano. The data suggest that chlorine partitions into a fluid phase as the magma decompresses and exsolves water during ascent. This is substantiated by a correlation between chlorine and water content in the melt (derived from the geochemical analysis of plagioclase melt inclusion and matrix glasses from phase I and II of dome growth). The matrix glass from the November 1999 and March 2000 domes indicate an open system degassing regime with a fluid-melt partition coefficient for chlorine of the order of 250–300. September 1997 glasses have higher chlorine contents and may indicate a switch to closed system degassing prior to explosive activity in September and October 1997. The OP-FTIR HCl time series suggests that HCl emission rate is strongly related to changes in eruption rate and we infer an emission rate of over 13.5 kt day–1 HCl during a period of high extrusion rate in September 2000. A calculation of the HCl emission rate expected for varying extrusion rates from the open-system degassing model suggests a HCl emission rate of the order of 1–4 kt day–1 is indicative of an extrusion rate of between 2 and 8 m3 s–1. Monitoring of HCl at Soufrière Hills Volcano provide a proxy for extrusion rate, with changes in ratio between HCl and SO2 occurring rapidly in the plume. Order of magnitude changes occur in HCl emission rates over the time-scale of hours to days, making these changes easy to detect during the day-to-day monitoring of the volcano. Mean water emission rates are calculated to range from 9–24 kt day–1 during dome building activity, calculated from the predicted mass ratio of H2O:HCl in the fluid at the surface and FTIR-derived HCl emission rates.  相似文献   

5.
The emission rate of carbon dioxide escaping from the summit of Kīlauea Volcano, Hawai?i, proved highly variable, averaging 4900 ± 2000 metric tons per day (t/d) in June–July 2003 during a period of summit inflation. These results were obtained by combining over 90 measurements of COSPEC-derived SO2 emission rates with synchronous CO2/SO2 ratios of the volcanic gas plume along the summit COSPEC traverse. The results are lower than the CO2 emission rate of 8500 ± 300 t/d measured by the same method in 1995–1999 during a period of long-term summit deflation [Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. and Doukas, M.P., 2002. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth, 107(B9): art. no.-2189.]. Analysis of the data indicates that the emission rates of the present study likely reflect changes in the magma supply rate and residence time in the summit reservoir. It is also likely that emission rates during the inflation period were heavily influenced by SO2 pulses emitted adjacent to the COSPEC traverse, which biased CO2/SO2 ratios towards low values that may be unrepresentative of the global summit gas plume. We conclude that the SO2 pulses are consequences of summit re-inflation under way since 2003 and that CO2 emission rates remain comparable to, but more variable than, those measured prior to re-inflation.  相似文献   

6.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

7.
This paper presents the results of 7 years (Aug. 1999–Oct. 2006) of SO2 gas measurements during the ongoing eruption of Tungurahua volcano, Ecuador. From 2004 onwards, the operation of scanning spectrometers has furnished high temporal resolution measurements of SO2 flux, enabling this dataset to be correlated with other datasets, including seismicity. The emission rate of SO2 during this period ranges from less than 100 to 35,000 tonnes/day (t d− 1) with a mean daily emission rate of 1458 t d− 1 and a standard deviation of ± 2026 t d− 1. Average daily emissions during inferred explosive phases are about 1.75 times greater than during passive degassing intervals. The total amount of sulfur emitted since 1999 is estimated as at least 1.91 Mt, mostly injected into the troposphere and carried westwards from the volcano. Our observations suggest that the rate of passive degassing at Tungurahua requires SO2 exsolution of an andesitic magma volume that is two orders of magnitude larger than expected for the amount of erupted magma. Two possible, and not mutually exclusive, mechanisms are considered here to explain this excess degassing: gas flow through a permeable stagnant-magma-filled conduit and gas escape from convective magma overturning in the conduit. We have found that real-time gas monitoring contributes significantly to better eruption forecasting at Tungurahua, because it has provided improved understanding of underlying physical mechanisms of magma ascent and eruption.  相似文献   

8.
The variations in sulfur dioxide (SO2) emission from the Summit Craters of Mt. Etna were determined, with particular reference to the period 1993–1995. Vehicle-based weekly measurements of SO2 flux, using a correlation spectrometer (COSPEC), suggest new input of magma into the main feeder system of the volcano between 1993 and 1995. Minimal flux values (<1000 t/day) preceded the two eruptive events in the period 1987–1995. Only approximately 9.5% of the magma that contributed the SO2 emission was erupted during the same period. Received: 3 November 1997 / Accepted: 21 September 1998  相似文献   

9.
Shallow shear-type seismic activity occurring beneath the Etna volcano during 1990–1995 has been analysed for hypocenter locations, focal mechanisms and stress tensor inversion. The results have been examined jointly with Electronic Distance Measurements and tiltmeter data collected in the same period and reported in the literature. Significant seismicity located in the upper 10 km was found to be confined to the time intervals in which ground deformation data indicated inflation of the volcano edifice (e.g., the periods preceding the December 1991–March 1993 and August 1995–March 1996 eruptive phases). The shocks mostly occurred in a sector approximately centered on the crater area and elongated in the East–West direction. The causative seismogenic stress shows a low-dip East–West orientation of σ1. In agreement with existing knowledge on relationships between local fault systems and magma uprise processes, the shallow seismicity in question is tentatively explained as being due to lateral compression by magma inside a nearly North–South system. The volcano deflation phase revealed by Electronic Distance Measurements and tilt data during the 1991–1993 major eruption was not accompanied by any significant shear-type shallow event. Below the depth of 10 km, the North–South prevailing orientation of σ1 reflects the dominant role of the regional stress.  相似文献   

10.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

11.
Cook Inlet volcanoes that experienced an eruption between 1989 and 2006 had mean gas emission rates that were roughly an order of magnitude higher than at volcanoes where unrest stalled. For the six events studied, mean emission rates for eruptions were ∼13,000 t/d CO2 and 5200 t/d SO2, but only ∼1200 t/d CO2 and 500 t/d SO2 for non-eruptive events (‘failed eruptions’). Statistical analysis suggests degassing thresholds for eruption on the order of 1500 and 1000 t/d for CO2 and SO2, respectively. Emission rates greater than 4000 and 2000 t/d for CO2 and SO2, respectively, almost exclusively resulted during eruptive events (the only exception being two measurements at Fourpeaked). While this analysis could suggest that unerupted magmas have lower pre-eruptive volatile contents, we favor the explanations that either the amount of magma feeding actual eruptions is larger than that driving failed eruptions, or that magmas from failed eruptions experience less decompression such that the majority of H2O remains dissolved and thus insufficient permeability is produced to release the trapped volatile phase (or both). In the majority of unrest and eruption sequences, increases in CO2 emission relative to SO2 emission were observed early in the sequence. With time, all events converged to a common molar value of C/S between 0.5 and 2. These geochemical trends argue for roughly similar decompression histories until shallow levels are reached beneath the edifice (i.e., from 20–35 to ∼4–6 km) and perhaps roughly similar initial volatile contents in all cases. Early elevated CO2 levels that we find at these high-latitude, andesitic arc volcanoes have also been observed at mid-latitude, relatively snow-free, basaltic volcanoes such as Stromboli and Etna. Typically such patterns are attributed to injection and decompression of deep (CO2-rich) magma into a shallower chamber and open system degassing prior to eruption. Here we argue that the C/S trends probably represent tapping of vapor-saturated regions with high C/S, and then gradual degassing of remaining dissolved volatiles as the magma progresses toward the surface. At these volcanoes, however, C/S is often accentuated due to early preferential scrubbing of sulfur gases. The range of equilibrium degassing is consistent with the bulk degassing of a magma with initial CO2 and S of 0.6 and 0.2 wt.%, respectively, similar to what has been suggested for primitive Redoubt magmas.  相似文献   

12.
K lauea Volcano, Hawai‘i, currently hosts the longest running SO2 emission-rate data set on the planet, starting with initial surveys done in 1975 by Stoiber and his colleagues. The 17.5-year record of summit emissions, starting in 1979, shows the effects of summit and east rift eruptive processes, which define seven distinctly different periods of SO2 release. Summit emissions jumped nearly 40% with the onset (3 January 1983) of the Pu‘u ‘ ‘ -K paianaha eruption on the east rift zone (ERZ). Summit SO2 emissions from K lauea showed a strong positive correlation with short-period, shallow, caldera events, rather than with long-period seismicity as in more silicious systems. This correlation suggests a maturation process in the summit magma-transport system from 1986 through 1993. During a steady-state throughput-equilibrium interval of the summit magma reservoir, integration of summit-caldera and ERZ SO2 emissions reveals an undegassed volume rate of effusion of 2.1×105 m3/d. This value corroborates the volume-rate determined by geophysical methods, demonstrating that, for K lauea, SO2 emission rates can be used to monitor effusion rate, supporting and supplementing other, more established geophysical methods. For the 17.5 years of continuous emission rate records at K lauea, the volcano has released 9.7×106 t (metric tonnes) of SO2, 1.7×106 t from the summit and 8.0×106 t from the east rift zone. On an annual basis, the average SO2 release from K lauea is 4.6×105 t/y, compared to the global annual volcanic emission rate of 1.2×107 t/y.  相似文献   

13.
Santa Ana volcano in western El Salvador, Central America, had a phreatic eruption at 8:05 am (local time) on October 1, 2005, 101 years after its last eruption. However, during the last one hundred years this volcano has presented periods of quiet degassing with fumarolic activity and an acidic lake within its crater. This paper presents results of frequent measurements of SO2 degassing using the MiniDOAS (Differential Optical Absorption Spectroscopy) system and a comparison with the volcanic seismicity prior to the eruption, during, and after the eruption. Vehicle measurements of SO2 flux were taken every hour during the first nine days of the eruption and daily after that. The period of time reported here is from August to December, 2005. Three periods of degassing are distinguished: pre-eruptive, eruptive, and post-eruptive periods. The intense activity at Santa Ana volcano started in July 2005. During the pre-eruptive period up to 4306 and 5154 ton/day of SO2 flux were recorded on October 24 and September 9, 2005, respectively. These values were of the same order of magnitude as the recorded values just after the October 1st eruption (2925 ton/day at 10:01 am). Hourly measurements of SO2 flux taken during the first nine days after the main eruptive event indicate that explosions are preceded by an increase in SO2 flux and that this parameter reaches a peak after the explosion took place. This behavior suggests that increasing accumulation of exsolved magmatic gases occurs within the magmatic chamber before the explosions, increasing the pressure until the point of explosion. A correlation between SO2 fluxes and RSAM (Real Time Seismic Amplitude Measurements) is observed during the complete sampling period. Periodic fluctuations in the SO2 and RSAM values during the entire study period are observed. One possible mechanism explaining these fluctuations it that convective circulation within the magmatic chamber can bring fresh magma periodically to shallow levels, allowing increasing degasification and then decreasing degasification as the batch of magma lowers its gas content, becomes denser, and sinks to give space to a new magma pulse. These results illustrate that the measurements of SO2 flux can provide important warning signals for incoming explosive activity in active volcanoes.  相似文献   

14.
Hydrothermal activity is common in the Tatun Volcano Group of northern Taiwan. Helium isotopic compositions of fumarolic samples show that mantle component occupies more than 60% in the previous study. Along with recent seismic results, a magma reservoir is inferred to have existed beneath the area of Da-you-keng, where fumarolic venting is the most active in Tatun Volcano Group. Progressive increases of HCl concentrations and SO2/H2S ratio in fumaroles from Da-you-keng have been observed since August 2004. The HCl concentration changed from almost the detection limit to thousands of ppm, even up to 30,000 ppm. SO2/H2S ratios varied from almost 0 to 3; hence SO2 became the dominated S species in this area. These variations were accompanied by rising temperature of fumaroles in the Tatun Volcano Group, especially in the area of Da-you-keng (from boiling point to 131 °C). Meanwhile, 3He/4He ratios showed a decreasing trend but returned to normal values shortly thereafter. We propose two possible processes, 1) new magma supply and 2) recent opening of fractures in local area, to explain these observations. Based on the change of 3He/4He ratio and lack of ground deformation, we consider the latter might be more plausible.  相似文献   

15.
Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997–September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.Editorial responsibility: H. Shinohara  相似文献   

16.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava.  相似文献   

17.
In 2005 Soufrière Hills Volcano on Montserrat started its third major episode of dome growth since the current eruption started in 1995. The style of seismicity associated with dome growth has changed, in particular the events known as ‘hybrid’ earthquakes have reduced in numbers by an order of magnitude compared to previous dome growth episodes. In the past, hybrid earthquakes have been associated with magma ascent and so it is surprising to observe prolonged periods of rapid dome growth during which very few hybrid earthquakes are recorded. In addition, the frequency of the codas of hybrid earthquakes, as well as of some of the so called ‘long-period’ events, has changed. The changes in recorded seismicity have had a marked effect on the techniques used to monitor the state of the volcano and those events that continue to be recorded in large numbers (‘rockfall events’) have been used to assess the state of activity at the volcano.  相似文献   

18.
Causes and consequences of pressurisation in lava dome eruptions   总被引:3,自引:0,他引:3  
High total and fluid pressures develop in the interior of high-viscosity lava domes and in the uppermost parts of the feeding conduit system as a consequence of degassing. Two effects are recognised and are modelled quantitatively. First, large increases in magma viscosity result from degassing during magma ascent. Strong vertical gradients in viscosity result and large excess pressures and pressure gradients develop at the top of the conduit and in the dome. Calculations of conduit flow show that almost all the excess pressure drop from the chamber in an andesitic dome eruption occurs during the last several hundred metres of ascent. Second, microlites grow in the melt phase as a consequence of undercooling caused by gas loss. Rapid microlite growth can cause large excess fluid pressures to develop at shallow levels. Theoretically closed-system microlite crystallization can increase local pressure by a few tens of MPa, although build up of pressure will be countered by gas loss through permeable flow and expansion by viscous flow. Microlite crystallization is most effective in causing excess gas pressures at depths of a few hundred metres in the uppermost parts of the conduit and dome interior. Some of the major phenomena of lava dome eruptions can be attributed to these pressurisation effects, including spurts of growth, cycles of dome growth and subsidence, sudden onset of violent explosive activity and disintegration of lava during formation of pyroclastic flows. The characteristic shallow-level, long-period and hybrid seismicity, characteristic of dome eruptions, is attributed to the excess fluid pressures, which are maintained close to the fracture strength of the dome and wallrock, resulting in fluid movement during formation of tensile and shear fractures within the dome and upper conduit.  相似文献   

19.
A tripod-mounted correlation spectrometer was used to measure SO2 emissions from Pu`u `O`o vent, mid-ERZ, Kilauea, Hawaii between Episodes 33 and 34 (June 13 to July 6, 1985). In 24 repose days, 906 measurements were collected, averaging 38 determinations/day. Measurements reflect 13% of the total 576 hours of the repose and 42% of the bright daylight hours. The average SO2 emission for the 24-day repose interval is 167±83 t/d, a total of 4000 tonnes emitted for the entire repose. The large standard deviation reflects the puffing character of the plume. The overall rate of SO2 degassing gently decreased with a zero-intercept of 44–58 days and was interrupted by two positive peaks. The data are consistent with the gas emanating from a cylindrical conduit of 50 meter diameter and a length of 1700 meters which degasses about 50% of its SO2 during 24 days. This is in support of the Pu'u `O`o model of Greenland et al. (1987). 36 hours before the onset of Episode 34 (July 5–6, 1985), elevated SO2 emissions were detected while the magma column was extremely active ultimately spilling over during dome fountaining. A mid-repose anomaly of SO2 emission (June 21–22, 1985) occurs two days before a sudden increase in the rate of summit inflation (on June 24, 1985), suggesting magma was simultaneously being injected in both the ERZ and summit reservoir until July 24 when it was channelled only to the summit reservoir. This implies degassing magma is sensitive to perturbations within the rift zone conduit system and may at times reflect these disturbances. Periods of 7–45 min are detected in the daily SO2 emissions, which possibly reflect timing of convective overturn in the cylindrical magma body. If the 33–34 repose interval is considered representative of other repose periods, the ERZ reposes of Jan 1983–Jan 1986 ERZ activity, contributed 1.6 × 105 tonnes of SO2 to the atmosphere. Including summit fuming from non-eruptive fumaroles (2.7 × 105 tonnes SO2); 28% of the total SO2 budget from Kilauea between Jan 1983 to Jan 1986 was contributed by quiescent degassing, and the remainder was released during explosive fountaining episodes.  相似文献   

20.
We analyse shortwave infrared thermal data of the phase 1 eruption of Unzen Volcano (Japan) extracted from eight nighttime Thematic Mapper (TM) images taken from the Landsat 5 satellite between October 1991 and November 1992. We identify two discrete regions of the dome that were heated to high temperature by the ongoing eruptive activity; a fumarolically heated region and an area associated with the effusion of new lava. We concentrate analysis on the fumarolically heated region and investigate the relationships between parameters derived from the infrared radiance data and the nature of the fumarolic gas and magma fluxes. Temporal variations in the parameters derived from the radiance data closely follow those observed in the measured rate of magma effusion. The positive correlation observed between the fumarolically driven shortwave infrared flux and the magma discharge rate (r2=0.64) indicates that degassing occurred efficiently and in proportion to the amount of magma supplied. Over our monitoring period, the data suggest that gas accumulation within the edifice did not occur, this conclusion agreeing with a previous finding obtained using correlation spectrometer (COSPEC) analysis of SO2 flux rates. A positive correlation (r2=0.56) was also found between the mean radiance of the pixels in the fumarolically heated region and the overall size of that region. This suggests a potential mechanism whereby, when gas pressure within the edifice increased, excess gas escaped through additional pathways to the surface as well through an increased flux at the main fumarolic vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号