首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results of plankton biota studies in the southwestern Kara are presented. The spatial distribution of hydrochemical and hydrophysical parameters related to structural and functional characteristics of phytoplankton in the surface water is considered. The chlorophyll a concentration varied in the surface layer of the Kara Sea from 0.08 to 3.22 mg m–3 (mean value 0.62 mg m–3). Primary production varied from 0 to 1.92 mg C m–3 day–1 (the mean value of 0.42 mg C m–3 day–1) in the ice-covered water areas and was greater by a factor of four, ranging from 1.01 to 3.46 mg C m–3 day–1 (the mean value of 1.79 mg C m–3 day–1) in ice-free areas. In this case, the total algal biomass varied from 0.8 to 110.7 mg C m–3 (mean value 10.6 mg C m–3). It is shown that in the study period, waters from the western Kara Sea were more productive than the estuarine water areas of the Ob and Yenisei rivers. The activity of phototrophic phytoplankton in river waters was almost completely absent. It is established that the contents of nutrients and iron were higher than the threshold for limitation of phytoplankton development. The experiments showed that the production activity of phototrophic algae is restrained by light deficit beneath the ice.  相似文献   

2.
Samples collected from 10 depths at 25 stations in September–October 1996 and 12 depths at 28 stations in April–May 1997 on an Atlantic Meridional Transect between the British Isles and the Falkland Islands were analysed by flow cytometry to determine the numbers and biomass of four categories of picoplankton: Prochlorococcus spp, Synechococcus spp, picoeukaryotic phytoplankton and heterotrophic bacteria. The composition of the picoplankton communities confirmed earlier findings (Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998) about distinctive regions along the transect and indicated that the stations should be grouped into five provinces: northern temperate, northern Atlantic gyre, equatorial, southern Atlantic gyre and southern temperate, with an intrusion of upwelling water off the coast of Mauritania between the northern Atlantic gyre and equatorial waters. Prochlorococcus was the most numerous phototrophic organism in waters of both northern and southern gyres and in the equatorial region, at concentrations in excess of 0.1×106ml−1; it also dominated plant biomass in the gyres, but the biomass of the larger picoeukaryotic algae equalled that of Prochlorococcus in the equatorial region; higher standing stocks of both Prochlorococcus and picoeukaryotes were present in spring than in autumn in waters of both gyres. In temperate waters at both ends of the transect the numbers and biomass of picoeukaryotes and, more locally, of Synechococcus increased, and the Synechococcus, particularly, were more numerous in spring than in autumn. There was a pronounced southward shift of the main populations of both Synechococcus and Prochlorococcus in April–May in comparison to those of September–October, associated with seasonal changes in solar radiation, the abundance of Prochlorococcus dropping sharply near the 17°C contour, while Synechococcus was still present at temperatures below 10°C. Picoeukaryotes were more tolerant of low temperatures and lower light levels, often being more abundant in samples from greater depths, where they contributed to the deep chlorophyll maximum. Heterotrophic bacterial numbers and biomass tended to be highest in those samples where phototrophic biomass was greatest, with peaks in temperate and equatorial waters, which were shifted southwards in April–May compared with September–October.  相似文献   

3.
Phytoplankton community and its distribution were investigated in the south part of the Polar Front in the eastern Barents Sea in October 2014. Analysis of the spatial differences in the phytoplankton structure was performed in connection with changes of the temperature, salinity and biogenic regime. At the end of the growing season in the phytoplankton community was dominated by destruction processes and the concentration of nutrients in the upper mixed layer was higher than the limiting level. Coccolithophores (Emiliania huxleyi and Discosphaera cf. tubifer) dominanted over investigated area. The maximum values of abundance and biomass of coccolithophores reached 90.4 mln.cell/m3 and 30.8 mgC/m3, drawing up 82% of the total number and 93% of the total biomass of phytoplankton. Influence of transformed the waters of Atlantic origin was observed in the western part of the investigated area. The number of species in the phytoplankton community here was 1.5–2 times lower than in the eastern part of the occupied mostly by Barents Sea water. In the eastern part of the presence of large dinoflagellates Neoceratium spp. (Ceratium spp.) and Dinophysis spp., lower values of chlorophyll a concentration, a higher proportion of pheophytin in the amount of pigment chlorophyll + pheophytin, the high content of ammonia in the upper mixed layer showed that in this area the phytoplankton was at a later seasonal succession stage than the western part.  相似文献   

4.
Using the data obtained in 1999–2000 during the spring bloom of phytoplankton (late May–early June), the variability of the pigment concentrations, the phytoplankton biomass and species compositions, and the hydrological conditions on the eastern shelf of Sakhalin Island was studied. The study resulted in revealing 135 microalgae species belonging to eight divisions. The most diversely presented were the Dinophyta dinoflagellates and Bacillariophyta diatoms (70 and 53 species, respectively). The concentration of chlorophyll a in the euphotic zone amounted, on average, to 3.8 mg/m3 in 1999 and 2.4 mg/m3 in 2000. It was shown that, in the northern and southern parts of the coastal zone, the concentration of chlorophyll a and the phytoplankton density in the spring were considerably different and depended on the hydrological conditions. In the north, their maximum values were found in the area of the depth break and were determined by the tidal mixing. The increased algae concentrations and temperature inversions at depths of 400–600 m confirm the downslope sliding of the near-bottom shelf waters. In the southern part, the high phytoplankton concentrations in the surface layer in 1999 confirmed by the monthly averaged estimates from the SeaWiFS satellite color scanner were caused by the abnormal northward propagation of the Soya Current waters and by intense tidal mixing.  相似文献   

5.
《Oceanologica Acta》1998,21(4):551-561
The Prévost lagoon (Mediterranean coast, France), was subject to annual dystrophic crises caused by the biodegradation of opportunistic macroalgae (Ulva lactuca) in the past. These crises result in anoxic waters with subsequent blooms of Purple Sulphur Bacteria (red waters) which, by oxidizing sulphide, contribute to the reestablishment of oxic conditions in the water column. Mechanical dredging of the macroalgal biomass has been carried out in the lagoon since 1991 with the aim of preventing the ecological and economic disturbances caused by such crises. Dredging began just before the phototrophic bloom when the water was already hypoxic (O2 = 0.7 mg·L−1) and contained sulphilde (H2S = 7.3 mg·L−1) and purple patches of phototrophic bacteria (Thiocapsa sp.) that were beginning to develop on decaying macroalgae at the sediment surface. The dredging prevented red water formation and drastically modified both phototrophic community structure and activity and biogeochemical sulphur cycling. The dredging permitted the reestablishment of oxic conditions for a short period only (1–13 August). Resuspension of the superficial sediment layers disturbed the phototrophic bacterial community, whose numbers decreased by one order of magnitude (from 2 × 106 to 3.9 × 105 CFU.mL−1). The phototrophic community was no longer effective in reoxidizing the reduced sulphur compounds remaining in the sediments, as shown by a drastic sulphate depletion in the superficial sediment layers. Moreover, the increase in the specific bacteriochlorophyll a concentration of the phototrophic purple bacteria and the rapid development of Green Sulphur Bacteria (Prosthecochloris-like microorganisms) indicated that the phototrophic community was growing under severe light-limiting conditions due to the resuspension of sediment particles in the water. These conditions did not allow the phototrophic bacterial community to efficiently reoxidize the reduced sulphur compounds originating from the sediments. In consequence, hypoxic conditions (O2 = 4.7 to 4.8 mg·L−1) and low sulphide concentrations (H2S = 0.4 to 0.7 mg·L−1) were detected in the water column until September. The ecological balance in the lagoon was reestablished only in October, whereas, in previous years it had been restored in August.  相似文献   

6.
2012年9月对辽东湾西部倾倒区海域的大型底栖动物进行了调查。调查海域共发现底栖动物54种,包括多毛类35种,甲壳类10种,软体动物6种,棘皮动物1种,其他2种。底栖动物丰度平均为1 140.8个/m2,生物量为11.02 g/m2,多样性指数平均为3.39。丰度、生物量比较结果显示,调查海域大型底栖动物群落受到中度干扰,调查海域底栖动物群落可分为以对照组为主的群落和倾倒区群落。海洋倾倒导致倾倒区内大型底栖动物的种类数量、丰度、生物量和多样性水平下降,群落特征种受倾倒的影响较明显。底栖动物与重金属含量之间无显著相关关系,掩埋是辽东湾西部倾倒活动主要的影响方式。  相似文献   

7.
Particular features of the distribution of the transparency and particulate matter content, their variability, and their interdependence in the surface water layer (0–5 m) over the northwestern shelf and in the adjacent abyssal part of the Black Sea in the summer were considered on the basis of long-term simultaneous optical, biological, and hydrological observations (1979–1993). In the shelf regions with different river discharges and in the waters of the open part of the sea, the distributions of the transparency, the total particulate matter, and its organic components (organic carbon, nitrogen, and chlorophyll a), as well as the relative content of particulate organic carbon in the total amount of the particulate matter and the content of chlorophyll a in the particulate organic carbon, were considered. The distributions of the transparency and particulate matter and their dependence on the water dynamics are in good agreement. It was demonstrated that extreme anthropogenic eutrophication influences the western and northern coastal shelf areas. The water transparency and particulate organic matter distributions in the central shelf area subjected to the influence of transformed river water and the water properties of the southern part of the shelf, which is influenced by the waters of the open sea, were determined according to the particular structure of the phytoplankton, its abundance, and the processes of its production and destruction.  相似文献   

8.
The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6–11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.  相似文献   

9.
2006年10月在长江口及邻近海域采用流式细胞技术测定了微微型浮游生物:聚球藻Synechococcus、微微型光合真核生物(picoeukaryotes)和异养浮游细菌(heterotrophic bacteria)的丰度和碳生物量,研究了其生态分布特点,并分析了其与环境因子之间的关系.结果表明,聚球藻、微微型光合真...  相似文献   

10.
The species composition and seasonal dynamics of the population density and biomass of the prasinophycean algae of the genus Pyramimonas were investigated in the Russian waters of the East/Japan Sea. According to literature data and the results of our observations, eight species of the prasinophycean algae were identified, and some of them were new for the Russian waters of the East/Japan Sea as follows: P. aff. amylifera Ñonrad, P. aff. cordata McFadden, Hill et Wetherbee, and P. nansenii Braarud. An analysis of their seasonal dynamics showed that the most conspicuous winter peak of the population density of Pyramimonas species in the Amurskii Bay was clearly distinguishable in February. In winter and early spring, the prasinophycean algae made a considerable contribution of 28 to 60% into the total population density on the background of a relatively low biomass, 1.1–14.4% of the total phytoplankton biomass in the Amurskii Bay. In the Golden Horn Bay, the summer peak of the population density of Pyramimonas species was most intensive in June. In summer, during the period of mass development of the algae of the genus Pyramimonas in the Golden Horn Bay, the prasinophycean algae contributed up to 71% of the total population density and up to 84% of the total microalgal biomass. An increase was noted in the density and biomass of the Pyramimonas species in the polluted waters near the sewage water outlets in the Amurskii and Golden Horn bays.  相似文献   

11.
The results of the studies within the framework of the international expedition onboard R/V Vladimir Parshin in September–October 2005 are presented. Intensive development of Bacillariophyceae and Dynophyceae was recorded in the coastal waters of Bulgaria, Turkey, and in the Danube River Delta during the period of the investigations. The increase in the algae population was accompanied by rising of the Chlorophyll a concentration up to 2.0–5.5 mg m?3. In the deep water region, it did not exceed 0.54 mg m?3. The phytoplankton growth rate in the surface water layer varied from 0.1 to 1.0 day?1. The phytoplankton growth rate and NO2+NO3 concentration, as well as the silicon concentration, were correlative, as was described by the Michaelis-Menten equation. The phytoplankton growth was affected by the integral impact of basic nutrients. The zooplankton grazing varied from 0.10 to 0.69 day?1, and the average values in different regions may vary by 1.5 times. The microalgae size range is one of the major factors of the grazing regulation. The rate of the phytoplankton consumption was decreasing according the increasing of the largest diatom Pseudosolenia calcaravis impact on the total biomass of the nano- and microphytoplankton.  相似文献   

12.
The waters of the Bering and Chukchi seas, as well as the De Long Strait, are investigated based on the data obtained in August 2013 during the scientific expedition of the Far Eastern Floating University on the research vessel Professor Khlyustin. Chlorophyll a concentrations calculated from MODIS-Aqua and VIIRS satellite data by ocean color and obtained by means of shipboard flow-through fluorometric measurements are comparatively analyzed. Vessel data are corrected for standard spectrophotometric measurements and the vertical depth distribution of phytoplankton. It has been found that, in the waters of the Eastern Arctic, satellite radiometers showed overestimated chlorophyll a concentrations in the upper seawater layer visible from the satellite. This is associated with the additional contribution of colored dissolved organic matter in the sea surface color. In the De Long Strait, satellite measurements incorrectly estimate the depth integrated chlorophyll a concentration, since the bulk of phytoplankton cells at a chlorophyll a concentration of 10–20 g/L is at depths of 25–30 m with luminosity of 5%.  相似文献   

13.
The distribution and feeding of dominant mesozooplankton species were studied in the estuary of the Ob River and adjacent inner Kara Sea shelf waters in September 2013. It was shown that the spatial distributions of Cyclops sp., Senecella siberica, Limnocalanus macrurus, Mysis oculata, Drepanopus bungei, Jashnovia tolli and Pseudocalanus sp. are related to the specific characteristics of the hydrographic regime in the estuarine frontal zone. The distributions of Cyclops sp., Senecella siberica, and Pseudocalanus sp. are mainly limited by salinity, while other species inhabit an area with a wide range of salinity values without clear preferences. Peaks of their abundance could be either consolidated or distanced in space. The populations of Jashnovia tolli, Drepanopus bungei, and Pseudocalanus sp. permanently inhabit the layer under the pycnohalocline; the populations of Cyclops sp. and Mysis oculata inhabit the upper mixed layer. Limnocalanus macrurus demonstrates a different vertical distribution pattern: the copepod undertakes diel vertical migrations in the southern part of the estuarine frontal zone; in its northern part, the population is concentrated below the pycnocline during day and night. The differences in the distributions of the studied species determine their feeding behavior and their role in phytoplankton grazing. The most intense utilization of biomass and production of autotrophic phytoplankton by zooplankton occur in the freshened water zone and the adjacent southern periphery of the estuarine frontal zone: the total daily phytoplankton consumption makes up 10–18% of the biomass and 60–380% of primary production. Daily zooplankton consumption of phytoplankton in the estuarine frontal zone decreases to 2–7% of the biomass and to 14% of primary production; in inner shelf waters, the values do not exceed 1% for both phytoplankton biomass and production.  相似文献   

14.
春、秋季南黄海浮游纤毛虫丰度及生物量的分布差异   总被引:1,自引:0,他引:1  
Seasonal variation of marine plankton spatial distribution is important in understanding the biological processes in the ocean.In this study,we studied spatial distribution of planktonic ciliate abundance and biomass in the central deep area(station depth greater than 60 m) and the coastal shallow area(station depth less than 60 m) of the southern Yellow Sea(32°–36.5°N,121°–125°E) in spring(April) and autumn(October–November) of 2006.Our results showed that both ciliate abundance and biomass in the surface waters were higher in spring((1 490±2 336)ind./L;(4.11±7.81) μg/L) than in autumn((972±823) ind./L;(1.11±1.18) μg/L,calculated by carbon).Ciliate abundance and biomass in the surface waters of the coastal shallow area were similar in spring and autumn.However,in the central deep area,those values were much higher in spring((1 878±2 893) ind./L;(5.99±10.10)μg/L) than in autumn((738±373) ind./L;(0.74±0.76) μg/L).High values of ciliate abundance and biomass occurred in the central deep area in spring and in the coastal shallow area in autumn.Mixotrophic ciliate Laboea strobila was abundant in the central deep area in spring,when a phytoplankton bloom occurred.However,in autumn,L.strobila was abundant in the coastal shallow area.Boreal tintinnid Ptychocyli obtusa was found in spring.Both L.strobila and P.obtusa were concentrated in the surface waters when their abundance was more than 1 000 ind./L.Peaks of these species were in the subsurface waters when their abundance was less than 400 ind./L.This study showed that both high abundance and biomass of ciliates occurred in different areas in southern Yellow Sea seasonally.  相似文献   

15.
Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic–oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998–1999.  相似文献   

16.
To identify water with an excess nitrate concentration to phosphate ratio and its potential source, the nutrient concentrations in the Tsushima Strait (TSS) were investigated over ten cruises in August and September 2007–2014, excluding 2010. On the basis of the Redfield ratio, water with an excess nitrate concentration of >1 μM (positive ExNOx water) was identified below the surface mixed layer during four cruises in 2011–2013. Positive ExNOx water was present mainly in less-saline (<34) waters with a density of 22–25 σ θ , and 25–75 m depth. However, in August 2012, positive ExNOx was detected in dense (25–25.5 σ θ ) and deep (50–110 m depth) waters near the salinity maximum, although the salinity during this period was significantly lower than that in other years. The horizontal length of positive ExNOx water was >100 km across the TSS during two cruises in August 2012 and September 2013, respectively. According to multi-regression analysis conducted on the silicate concentration, temperature, and salinity, the silicate concentration was increased in the less-saline subsurface water. The required amount of original freshwater was 108–9 m3 day?1 based on the excess nitrate concentration. This evidence indicates that the positive ExNOx water originated from large river waters such as the Changjiang. Thus, discharged water from the rivers of the East Asia is contributing to the increased N:P ratio in the Tsushima Warm Current, southern Japan Sea.  相似文献   

17.
The micro- and mesozooplankton communities in surface waters of the Greenland Sea are described based on data from five cruises covering an annual cycle. Special emphasis is given to the summer period (June and August), prior to and after the descent of Calanus spp. Calanus spp. dominated the copepod community during the spring bloom and in the beginning of the summer. However, during the summer, there was a pronounced shift in the zooplankton composition in the euphotic zone. In contrast to what has been observed in other Arctic systems, smaller genera such as Pseudocalanus spp., Oncaea spp. and Oithona spp. became abundant and the total copepod biomass remained high after the Calanus spp. descended for hibernation. The peak protozooplankton biomass in the Greenland Sea (June) co-occurred with the peak in Calanus spp. Protozooplankton biomass then decreased during the summer. Growth of protozooplankton and grazing rates of the two dominating non-Calanus genera, Oithona and Pseudocalanus, were measured. For both copepod genera, protozooplankton constituted 40% or more of the diet, and maximum clearance was on prey items with an equivalent spherical diameter between 15 and 30 μm. The non-Calanus components of the zooplankton community were responsible for 70–99% of the total zooplankton grazing on phytoplankton during summer and were crucial for the recycling and respiration of primary production.  相似文献   

18.
It has long been seen from satellite ocean color data that strong zonal gradients of phytoplankton biomass persistently occur in the southern Drake Passage during austral summer and fall, where the low productivity Antarctic Surface Water (ASW) within the Antarctic Circumpolar Current (ACC) region transforms to the high productivity water. An interdisciplinary cruise was conducted in February and March 2004 to investigate potential physical and biogeochemical processes, which are responsible for transporting nutrients and metals and for enhancing primary production. To explore physical processes at both the meso- and large-scales, surface drifters, a shipboard Acoustic Doppler Current Profiler and conductivity–temperature–depth sensors were used. Analyzing meso- and large-scale hydrography, circulation and eddy activities, it is shown that the topographic rise of the Shackleton Transverse Ridge plays the key role in steering an ACC branch southward west of the ridge, forming an eastward ACC jet through the gap between the ridge and Elephant Island and causing the offshelf transport of shelf waters approximately 1.2 Sv from the shelf near Elephant Island. High mesoscale eddy activities associated with this ACC southern branch and shelf waters transported off the shelf were found. The mixing between the iron-poor warmer ASW of the ACC and iron-rich waters on the shelf through horizontal transport and vertical upwelling processes provides a physical process which could be responsible for the enhanced primary productivity in this region and the southern Scotia Sea.  相似文献   

19.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   

20.
The abundances, biomasses, and population structures of two introduced ctenophore species—Mnemiopsis leidyi and Beroe ovata—were monitored along with mesoplankton in the near-shore waters of the northern Black Sea (Sevastopol Bay and adjacent regions) over a period of four years (2000–2003), after the B. ovata invasion. The annual dynamics of the M. leidyi population were similar in these years: very low abundances and biomass values were observed during the major part of the year (unlike previous years) with a shortterm peak in the summer-early autumn. B. ovata development during the growth in the M. leidyi biomass resulted in a sharp fall in the M. leidyi biomass down to extremely low values. The interannual differences in the populations of both ctenophore species were reflected by their quantitative parameters: the maximum biomass of M. leidyi varied from 790 g/m2 in 2001 to 211–266 g/m2 in other years. The maximum biomass values of B. ovata (38.9 and 32.5 g/m2) were observed in 2001 and 2003, respectively. In 2000–2003, from July to September, during the peak in mnemiopsis development, the population consumed from 1.9 ± 0.4 to 13.4 ± 5.7% of the mesoplankton biomass per day, while in the years of B. ovata absence, these values were as high as 30–40%. For the first time, the grazing rate of microzooplankton by M. leidi larvae was estimated. In August 2003, the maximum daily consumption rate was as great as 23–25% of the microzooplankton biomass. The daily rations of the mnemiopsis larvae on microzooplankton were close or even higher than those on mesoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号