首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Application of standard map projections to the ellipsoidal Earth is often considered excessively difficult. Using a few symbols for frequently-used combinations, exact equations may be shown in compact form for ellipsoidal versions of conformal, equal-area, and equidistant projections developed onto the cone, cylinder (in conventional position), and plane, as well as for the polyconic projection. Series are needed only for true distances along meridians. The formulas are quite interrelated. The ellipsoidal transverse and oblique Mercator projections remain more involved. An adaptation of the Space Oblique Mercator projection provides a new ellipsoidal oblique Mercator which, unlike Hotine's, retains true scale throughout the length of the central line.  相似文献   

2.
As a conformal mapping of the sphere S 2 R or of the ellipsoid of revolution E 2 A , B the Mercator projection maps the equator equidistantly while the transverse Mercator projection maps the transverse metaequator, the meridian of reference, with equidistance. Accordingly, the Mercator projection is very well suited to geographic regions which extend east-west along the equator; in contrast, the transverse Mercator projection is appropriate for those regions which have a south-north extension. Like the optimal transverse Mercator projection known as the Universal Transverse Mercator Projection (UTM), which maps the meridian of reference Λ0 with an optimal dilatation factor &ρcirc;=0.999 578 with respect to the World Geodetic Reference System WGS 84 and a strip [Λ0−Λ W 0 + Λ E ]×[Φ S N ]= [−3.5,+3.5]×[−80,+84], we construct an optimal dilatation factor ρ for the optimal Mercator projection, summarized as the Universal Mercator Projection (UM), and an optimal dilatation factor ρ0 for the optimal polycylindric projection for various strip widths which maps parallel circles Φ0 equidistantly except for a dilatation factor ρ0, summarized as the Universal Polycylindric Projection (UPC). It turns out that the optimal dilatation factors are independent of the longitudinal extension of the strip and depend only on the latitude Φ0 of the parallel circle of reference and the southern and northern extension, namely the latitudes Φ S and Φ N , of the strip. For instance, for a strip [Φ S N ]= [−1.5,+1.5] along the equator Φ0=0, the optimal Mercator projection with respect to WGS 84 is characterized by an optimal dilatation factor &ρcirc;=0.999 887 (strip width 3). For other strip widths and different choices of the parallel circle of reference Φ0, precise optimal dilatation factors are given. Finally the UPC for the geographic region of Indonesia is presented as an example. Received: 17 December 1997 / Accepted: 15 August 1997  相似文献   

3.
Abstract

Mercator depicted Croatia on several general maps. In accordance with the level of geographical knowledge, map scales and technical possibilities of the time, Mercator provided a relatively detailed depiction of basic geographical features on these maps. His interest in mapping Croatia was probably motivated by the fact that the Venetian Republic, the Habsburg Monarchy and the Ottoman Empire had fought over this area in the sixteenth century, contributing to the fragmentation of the medieval Croatian State, while at the same time facilitating economic, religious, linguistic, artistic and scientific communication between Central, South East and Mediterranean Europe. Mercator paid special attention to toponyms that enabled geographical objects to be identified and the decoding of cartographic contents. Research into Mercator’s maps has shown that geographical names, among other things, clearly indicate the sources of spatial data that he used. Additionally, geographical names on Mercator’s maps are significant indicators of the linguistic and cultural contacts that were particularly prominent in border areas, for example, along the eastern Adriatic coast, or the courses of the Danube, Sava and Drava.  相似文献   

4.
Summary Riemann polar/normal coordinates are the constituents to generate the oblique azimuthal projection of geodesic type, here applied to the reference ellipsoid of revolution (biaxial ellipsoid).Firstly we constitute a minimal atlas of the biaxial ellipsoid built on {ellipsoidal longitude, ellipsoidal latitude} and {metalongitude, metalatitude}. TheDarboux equations of a 1-dimensional submanifold (curve) in a 2-dimensional manifold (biaxial ellipsoid) are reviewed, in particular to represent geodetic curvature, geodetic torsion and normal curvature in terms of elements of the first and second fundamental form as well as theChristoffel symbols. The notion of ageodesic anda geodesic circle is given and illustrated by two examples. The system of twosecond order ordinary differential equations of ageodesic (Lagrange portrait) is presented in contrast to the system of twothird order ordinary differential equations of ageodesic circle (Proofs are collected inAppendix A andB). A precise definition of theRiemann mapping/mapping of geodesics into the local tangent space/tangent plane has been found.Secondly we computeRiemann polar/normal coordinates for the biaxial ellipsoid, both in theLagrange portrait (Legendre series) and in theHamilton portrait (Lie series).Thirdly we have succeeded in a detailed deformation analysis/Tissot distortion analysis of theRiemann mapping. The eigenvalues — the eigenvectors of the Cauchy-Green deformation tensor by means of ageneral eigenvalue-eigenvector problem have been computed inTable 3.1 andTable 3.2 (1, 2 = 1) illustrated inFigures 3.1, 3.2 and3.3. Table 3.3 contains the representation ofmaximum angular distortion of theRiemann mapping. Fourthly an elaborate global distortion analysis with respect toconformal Gau-Krüger, parallel Soldner andgeodesic Riemann coordinates based upon theAiry total deformation (energy) measure is presented in a corollary and numerically tested inTable 4.1. In a local strip [-l E,l E] = [-2°, +2°], [b S,b N] = [-2°, +2°]Riemann normal coordinates generate the smallest distortion, next are theparallel Soldner coordinates; the largest distortion by far is met by theconformal Gau-Krüger coordinates. Thus it can be concluded that for mapping of local areas of the biaxial ellipsoid surface the oblique azimuthal projection of geodesic type/Riemann polar/normal coordinates has to be favored with respect to others.  相似文献   

5.
The differential equations which generate a general conformal mapping of a two-dimensional Riemann manifold found by Korn and Lichtenstein are reviewed. The Korn–Lichtenstein equations subject to the integrability conditions of type vectorial Laplace–Beltrami equations are solved for the geometry of an ellipsoid of revolution (International Reference Ellipsoid), specifically in the function space of bivariate polynomials in terms of surface normal ellipsoidal longitude and ellipsoidal latitude. The related coefficient constraints are collected in two corollaries. We present the constraints to the general solution of the Korn–Lichtenstein equations which directly generates Gau?–Krüger conformal coordinates as well as the Universal Transverse Mercator Projection (UTM) avoiding any intermediate isometric coordinate representation. Namely, the equidistant mapping of a meridian of reference generates the constraints in question. Finally, the detailed computation of the solution is given in terms of bivariate polynomials up to degree five with coefficients listed in closed form. Received: 3 June 1997 / Accepted: 17 November 1997  相似文献   

6.
针对球体横墨卡托投影与基于地球椭球体的导航设备结合使用存在误差以及传统椭球横墨卡托投影依据经差分带不适用于极区的问题,在分析双重投影可用于极区存在计算奇异和计算溢出问题的基础上,研究了一种基于双重投影的横墨卡托投影极区应用改进方法。首先利用函数等效变换和经线长度比计算公式推导出椭球投影到球体上的坐标变换、球体半径和长度比计算公式,然后利用分段函数的方法研究了球体横墨卡托投影计算公式,综合两个阶段给出了完整的坐标变换公式和长度比计算公式,最后推导了子午线收敛角计算公式。理论分析和算例仿真表明,该改进方法能够解决极区投影计算奇异和计算溢出问题,近极点地区长度变形较小,且与导航设备采用的地球模型一致,可消除由于地球模型不同引起的误差,提高航海绘算精度。  相似文献   

7.
Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krüger’s series for the mapping to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about five times slower.  相似文献   

8.
《测量评论》2013,45(87):12-17
Abstract

The excuse for yet another paper on the Transverse Mercator projection, which has already received what should be more than its fair share of space in this Review, can only be that there is a fresh viewpoint to offer. It is the purpose of this paper to show that there are, in fact, two “Transverse Mercator” projections of the spheroid, of which one has hitherto almost escaped notice.  相似文献   

9.
Federal government mapping of the offshore areas of the USA in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of marine boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the necessary computations, but required many steps. The Bureau of Ocean Energy Management is revising these antiquated methods using Geographic Information System technology which will provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf.  相似文献   

10.
Mangroves of the Marine National Park constitute the second largest patch of mangroves in Gujarat, extending up to 11,000 ha, comprising six species of mangroves. Earlier studies carried out using remote sensing data pertained to baseline data generation and mapping and monitoring the mangroves (density-wise) of the Park from 1975 to 1993. Using IRS IC/ID LISS III data (1998–2001) supported by ground data, the distribution of different mangrove communities in the Park has been attempted. Amongst various image-processing techniques, band ratioing followed by supervised classification gave the best result (classification accuracy was 92%).Avicennia community is the most dominant community accounting for more than 70% of the area. TheRhizophora community occupies the inward margins of the creeks and theCeriops community is present in the interior regions. The ecotone between the marsh and mangrove communities has been identified as the transitional mangroves (Avicennia alba, Sueada), representing the transition from the less saline mangrove to the highly saline marsh community. The zoning of the mangroves has also helped in assessing the diversity of the region. Based on the richness of species, three areas, namely Bhains Bid, North-east Dide Ka Bet and South-east Chhad Island have been identified as highly diverse (most suitable area for preservation).  相似文献   

11.
A new companion for Mercator   总被引:1,自引:1,他引:0  
The inappropriate use of the Mercator projection has declined but still occasionally occurs. One method of contrasting the Mercator projection is to present an alternative in the form of an equal area projection. The map projection derived here is thus not simply a pretty Christmas tree ornament: it is instead a complement to Mercator’s conformal navigation anamorphose and can be displayed as an alternative. The equations for the new map projection preserve the latitudinal stretching of the Mercator while adjusting the longitudinal spacing. This allows placement of the new map adjacent to that of Mercator. The surface area, while drastically warped, maintains the correct magnitude.  相似文献   

12.
G. T. M. 《测量评论》2013,45(27):275-281
Abstract

I. Introduction.—Map projection is a branch of applied mathematics which owes much to J. H. Lambert (v. this Review, i, 2, 91). In his “Beyträge zum Gebrauche der Mathematik und deren Anwendung” (Berlin, 1772) he arrived at a form of projection whereof the Transverse Mercator is a special case, and pointed out that this special case is adapted to a country of great extent in latitude but of small longitudinal width. Germain (“Traité des Projections”, Paris, 1865) described it as the Projection cylindrique orthomorphe de Lambert, but he also introduced the name Projection de Mercator transverse or renversée; he shows that Lambert's treatment of the projection was remarkably simple.  相似文献   

13.
The cause of the formal difference ofp-norm distribution density functions is analyzed, two problems in the deduction ofp-norm formulating are improved, and it is proved that two different forms ofp-norm distribution density functions are equivalent. This work is useful for popularization and application of thep-norm theory to surveying and mapping. Supported by Scientific Research Fund of Human Province Education Department (No. 03C483).  相似文献   

14.
利用倾斜摄影技术生成的实景三维模型一般都仅仅作为一种浏览演示的方式,使用方式较为粗糙单一,其成果并没有真正应用到常规测绘产品生产的各个环节。本文对一种利用倾斜摄影三维模型的房檐改正方法进行了分析与精度评估。在已有倾斜摄影快速建立三维模型的基础上,采用建筑物立面散点正交原理直接对倾斜摄影三维模型居民地区域进行去房檐采集。该方法提供了一种全内业测图的模式,对地形图生产方法的改进具有重要意义。  相似文献   

15.
《测量评论》2013,45(58):142-152
Abstract

In January 1940, in a paper entitled “The Transverse Mercator Projection: A Critical Examination” (E.S.R., v, 35, 285), the late Captain G. T. McCaw obtained expressions for the co-ordinates of a point on the Transverse Mercator projection of the spheroid which appeared to cast suspicion on the results originally derived by Gauss. McCaw considered, in fact, that his expressions gave the true measures of the co-ordinates, and that the Gauss method contained some invalidity. He requested readers to report any flaw that might be discovered in his work, but apparently no such flaw had been detected at the time of his death. It can be shown, however, that the invalidities are in McCaw's methods, and there seems no reason for doubting the results derived by the Gauss method.  相似文献   

16.
高速铁路轨道控制测量采用精密控制测量技术,采用斜轴墨卡托投影可以避免高斯投影投影带可控范围小,坐标转换和分带计算的问题,对于东西走向的线路能很好地控制投影长度变形。文章以长吉高铁控制测量数据,实现斜轴墨卡托投影,经过其投影精度的探讨,确定斜轴墨卡托投影能满足高铁精密控制测量的精度要求。  相似文献   

17.
A conformal approximation to the Transverse Mercator (TM) map projection, global in longitude λ and isometric latitude q, is constructed. New formulas for the point scale factor and grid convergence are also shown. Assuming that the true values of the TM coordinates are given by conveniently truncated Gauss–Krüger series expansions, we use the maximum norm of the absolute error to measure globally the accuracy of the approximation. For a Universal Transverse Mercator (UTM) zone the accuracy equals 0.21  mm, whereas for the region of the ellipsoid bounded by the meridians  ±20° the accuracy is equal to 0.3  mm. Our approach is based on a four-term perturbation series approximation to the radius r(q) of the parallel q, with a maximum absolute deviation of 0.43  mm. The small parameter of the power series expansion is the square of the eccentricity of the ellipsoid. This closed approximation to r(q) is obtained by solving a regularly perturbed Cauchy problem with the Poincaré method of the small parameter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
针对当前市场上基于倾斜摄影三维模型采编大比例尺地形图软件种类繁多的现状,本文以目前市场上主流的3款采编软件--EPS,DP-Modeler和Idata3D为例,通过选取一个测试区域,对3款软件加载倾斜摄影三维模型、采集建筑物模型、采编DLG等技术性能进行深入对比分析。本文提出科学客观的分析以及评价意见,从而为基于倾斜摄影三维模型的大比例尺地形图测图应用提供翔实的技术指导,进一步推广应用新型地形图采编技术方法。  相似文献   

19.
《测量评论》2013,45(61):267-271
Abstract

Some publications that have dealt with the question of convergence of meridians seem, to the present writer, to be clouded with misconception, and these notes are intended to clarify some points of apparent obscurity. For instance, A. E. Young, in “Some Investigations in the Theory of Map Projections”, I920, devoted a short chapter to the subject, and appeared surprised to find that the convergence on the Transverse Mercator projection differs from the spheroidal convergence; the explanation which he advanced can be shown to be faulty. Captain G. T. McCaw, in E.S.R., v, 35, 285, derived an expression for the Transverse Mercator convergence which is equal to the spheroidal convergence, and described this as “a result which might be expected in an orthomorphic system”. Perhaps McCaw did not intend his remark to be so interpreted, but it seems to imply that the convergence on any orthomorphic projection should be equal to the spheroidal convergence, and it is easily demonstrated that this is not so. Also, in the second edition of “Survey Computations” there is given a formula for the convergence on the Cassini projection which is identical, as far as it goes, with that given for the Transverse Mercator, while the Cassini convergence as given by Young is actually the spheroidal convergence. Obviously, there is some confusion somewhere, and it is small wonder that Young prefaced his remarks with the admission that the subject had always presented some difficulty to him.  相似文献   

20.
The paper examines the potential ofVLBI time delay observables for the establishment and maintenance of a Conventional Terrestrial System (CTS). TheCTS is defined in2-D by the standard epoch positions and velocities of a network of control points located on a spherical reference surface. VLBI time delay observables are sensitive to the rotational motion of theCTS control points with respect to a Conventional Inertial System (CIS) which is represented by a network of radio sources. The motion of a control point with respect to theCIS is partitioned into global and regional components. The global components represent the rotational motion of the sphere with respect to theCIS, while the regional components represent the motion of theCTS points with respect to the sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号