首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 1052.5 erg. The underlying physics of the correlation is unclear at present.  相似文献   

6.
We analyzed a sample of 66 gamma-ray bursts (GRBs) and statistically confirmed the prediction on the time curve of the hardness ratio of GRBs made by Qin et al. based on the curvature effect. In their analysis, GRB pulses are divided into three types according to the shape of their raw hardness ratio (RHR) time curves, defined as to include the background counts to the signal counts, so as to make use of counts within small time intervals. Of the three types, very hard sources exhibit a perfect pulse-like profile (type 1), hard bursts possess a pulse-like profile with a dip in the decay phase (type 2), and soft bursts show no pulse-like profile but have only a dipped profile (type 3). In terms of the conventional hardness ratio, type 3 sources are indeed generally softer than those of type 1 and type 2, in agreement with the prediction. We found that the minimum value of RHR is sensitive in distinguishing the different types. We propose that GRB pulses can be classified according to the minimum value of RHR and that the different type sources may be connected with different strengths of the shock or/and the magnetic field.  相似文献   

7.
8.
Recently, Shen et al. have studied the contributions of the curvature effect of fireballs to the spectral lag and have shown that the observed lags can be accounted for by the effect. Here, we check their results by performing a more precise calculation with both formulae presented by Shen et al. and Qin et al. Several other aspects which were not considered by Shen et al. are investigated. We find that in the case of ultrarelativistic motions, both formulae are identical as long as the whole fireball surface is concerned. In our analysis, the previous conclusion that the detected spectral lags can be accounted for by the curvature effect is confirmed, while the conclusion that the lag has no dependence on the radius of fireballs is not true. We find that introducing extreme physical parameters is not the only outlet to explain these observed large lags. Even for the larger lags (∼5 s), a wider local pulse  (Δ t θ,FWHM= 107 s)  can account for it. Some conclusions not presented in Shen et al. or those modified in our analysis are listed below: (i)  lag ∝Γ−ε  with  ε > 2  ; (ii) lag is proportional to the local pulse width and the full width at half-maximum of the observed light curves; (iii) a large lag requires a large α0 and a small β0 as well as a large   E 0,p  ; (iv) when the rest-frame spectrum varies with time, the lag would become larger; (v) lag decreases with the increase of   Rc   ; (vi) lag ∝ E within the certain energy range for a given Lorentz factor; (vii) lag is proportional to the opening angle of uniform jets when  θj < 0.6Γ−1  .  相似文献   

9.
The Swift mission has discovered an intriguing feature of gamma-ray burst (GRBs) afterglows, a phase of shallow decline of the flux in the X-ray and optical light curves. This behaviour is typically attributed to energy injection into the burst ejecta. At some point this phase ends, resulting in a break in the light curve, which is commonly interpreted as the cessation of the energy injection. In a few cases, however, while breaks in the X-ray light curve are observed, optical emission continues its slow flux decline. This behaviour suggests a more complex scenario. In this paper, we present a model that invokes a double component outflow, in which narrowly collimated ejecta are responsible for the X-ray emission while a broad outflow is responsible for the optical emission. The narrow component can produce a jet break in the X-ray light curve at relatively early times, while the optical emission does not break due to its lower degree of collimation. In our model both components are subject to energy injection for the whole duration of the follow-up observations. We apply this model to GRBs with chromatic breaks, and we show how it might change the interpretation of the GRBs canonical light curve. We also study our model from a theoretical point of view, investigating the possible configurations of frequencies and the values of GRB physical parameters allowed in our model.  相似文献   

10.
11.
Gamma-Ray Bursts in the Swift Era   总被引:1,自引:0,他引:1  
1 INTRODUCTION Gamma-ray bursts (GRBs) are fascinating celestial objects. These short, energetic bursts of gamma-rays mark the most violent, cataclysmic explosions in the universe, likely associated with the births of stellar- size black holes or rapidly spinning, highly magnetized neutron stars. Since the detections of their long- wavelength afterglows (Costa et al. 1997; van Paradijs et al. 1997; Frail et al. 1997), GRBs are observa- tionally accessible in essentially all electromagn…  相似文献   

12.
Tail emission of the prompt gamma-ray burst (GRB) is discussed using a multiple emitting sub-shell (inhomogeneous jet, sub-jets or mini-jets) model, where the whole GRB jet consists of many emitting sub-shells. One may expect that such a jet with angular inhomogeneity should produce spiky tail emission. However, we found that the tail is not spiky but is decaying roughly monotonically. The global decay slope of the tail is not so much affected by the local angular inhomogeneity but affected by the global sub-shell energy distribution. The fact that steepening GRB tail breaks appeared in some events prefers the structured jets. If the angular size of the emitting sub-shell is around 0.01–0.02 rad, some bumps or fluctuations appear in the tail emission observed frequently in long GRBs. If the parameter differences of sub-shell properties are large, the tail has frequent changes of the temporal slope observed in a few bursts. Therefore, the multiple emitting sub-shell model has the advantage of explaining the small-scale structure in the observed rapid decay phase.  相似文献   

13.
We present an internal shock model with external characteristics for explaining the complicated light curves of gamma-ray bursts. Shocks produce gamma-rays in the interaction between a precessing beam of relativistic particles and the interstellar medium. Each time the particle beam passes the same line of sight with the observer the interstellar medium is pushed outward. Subsequent interactions between the medium and the beam are delayed by the extra distance to be travelled for the particles before the shock can form. This results in a natural retardation and leads to an intrinsic asymmetry in the light curves produced for gamma-ray bursts. In addition, we account for the cooling of the electron–proton plasma in the shocked region, which gives rise to an exponential decay in the gamma-ray flux. The combination of these effects and the precessing jet of ultrarelativistic particles produces light curves that can be directly compared with observed gamma-ray burst light curves. We illustrate the model by fitting a number of observed gamma-ray bursts that are difficult to explain with only a precessing jet. We develop a genetic algorithm to fit several observed gamma-ray bursts with remarkable accuracy. We find that for different bursts the observed fluence, assuming isotropic emission, easily varies over four orders of magnitude from the energy generated intrinsically.  相似文献   

14.
There has been increasing evidence that at least some gamma-ray bursts (GRBs) are emission beamed. The beamed GRB-afterglow evolution has been discussed by several authors in the ultrarelativistic case. It has been shown that the dynamics of the blast wave will be significantly modified by the sideways expansion, and there may be a sharp break in the afterglow light curves under certain circumstances. However, this is only true when the fireball is still relativistic. Here we present an analytical approach to the evolution of the beamed GRB blast wave expanding in the surrounding medium (density     in the non-relativistic case, our purpose is to explore whether the sideways expansion will strongly affect the blast-wave evolution as in the relativistic case. We find that the blast-wave evolution is strongly dependent on the speed of the sideways expansion. If it expands with the sound speed, then the jet angle θ increases with time as     which means that the sideways expansion has little effect on the afterglow light curves, the flux     for     and     for     It is clear that the light curve of     is not always steeper than that of     as in the relativistic case. We also show that if the expansion speed is a constant, then the jet angle     and the radius     in this case the sideways expansion has the most significant effect on the blast-wave evolution, the flux     independent of s , and we expect that there should be a smooth and gradual break in the light curve.  相似文献   

15.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

16.
17.
The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all 'bright' BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at 'intermediate' fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.  相似文献   

18.
Although more than 2000 astronomical gamma-ray bursts (GRBs) have been detected, the precise progenitor responsible for these events is unknown. The temporal phenomenology observed in GRBs can significantly constrain the different models. Here we analyse the time histories of a sample of bright, long GRBs, searching for the ones exhibiting relatively long (more than 5 per cent of the total burst duration) 'quiescent times', defined as the intervals between adjacent episodes of emission during which the gamma-ray count rate drops to the background level. We find a quantitative relation between the duration of an emission episode and the quiescent time elapsed since the previous episode. We suggest here that the mechanism responsible for the extraction and the dissipation of energy has to take place in a metastable configuration, such that the longer the accumulation period, the higher the stored energy available for the next emission episode.  相似文献   

19.
20.
We continue the study of the properties of non-radial pulsations of strange dwarfs. These stars are essentially white dwarfs with a strange quark matter (SQM) core. We have previously shown that the spectrum of oscillations should be formed by several, well-detached clusters of modes inside which the modes are almost evenly spaced. Here, we study the relation between the characteristics of these clusters and the size of the SQM core. We do so assuming that, for a given cluster, the kinetic energy of the modes is constant. For a constant amplitude of the oscillation at the stellar surface, we find that the kinetic energy of the modes is very similar for the cases of models with Log Q SQM=−2, −3 and −4, while it is somewhat lower for  Log Q SQM=−5  (here   Q SQM≡ M SQM/ M ; M SQM  and M are the masses of the SQM core and the star, respectively). Remarkably, the shape (amplitude of the modes versus period of oscillation) of the clusters of periods is very similar. However, the number of modes inside each cluster is strongly (and non-monotonously) dependent upon the size of the SQM core.
The characteristics of the spectrum of oscillations of strange dwarf stars are very different from the ones corresponding to normal white dwarfs and should be, in principle, observable. Consequently, the stars usually considered as white dwarfs may indeed provide an interesting and affordable way to detect SQM in an astrophysical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号