首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.  相似文献   

2.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

3.
We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range,Eastern Ghats,India.Extensive field surveys and sampling were conducted in 3 sites of the hill range:Site 1 Pterocarpus dominated forest(PTF)(19°40’02.2" N and 83°21’23.1" E),Site 2 Mangifera dominated forest(MAF)(19°40’02.8" N and 83°21’40.8" E) and Site 3 Mixed forest(MIF)(19°36’47.1" N and 83°21’02.7" E).A total of 28 families,42 genera,46 tree species,and 286 individual trees were recorded on an area of 0.6 ha.Tree density varied between 470 and 490 individuals ha-1 and average basal area between 3.16 and 10.04 m2 ha-1.Shannon Index(H’) ranged from 2.34 to 4.53,Simpson’s Index ranged from 0.07 to 0.09,and equitability Index ranged from 0.7 to 1.34.The number of individuals was highest in the girth at breast height(GBH) class of 50-70 cm.The soil nutrient status of the three forest types was related to tree species diversity.The soil pH value of the three sites reflected the slightly acidic nature of the area.Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen,EC and pH.The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.  相似文献   

4.
The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role in the conservation of species and the maintenance of ecosystem functions.However,little attention has been paid to the effects of corridors structural characteristics on the plant species restricted to such habitats.In this study,we selected three types of corridors including ditch,hedgerow and road,and ana-lyzed their structural characteristics.The plant species presented in these corridors were investigated,and the species diversity,abun-dance and frequency were estimated.Moreover,spatial arrangements of corridors were classified into different types to discuss whether there were significant effects of corridor network on plant distribution.The results show that three types of corridors have different ef-fects on plant species composition and diversity.The one-one combined corridor networks and total network associated by three corri-dors have more complex structural features than each single type of corridor.However,there is no strong correlation between the corri-dor networks with their plant species.We suggest that carrying out a pointed vegetation survey at corridor intersections to further test the relationships between structural features of corridor and plants is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号