首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The processes of species obtaining water resources are crucial to evaluate the adaptability of plantations, which can affect the establishment and survival of restored ecosystems and functions of water-limited ecosystems. However, there are still limitations in understanding water use patterns of different four plantations (Populus sylvestris, Salix cheliophe, Hippophae rhamnoides and Artemisia ordosica) in the Qinghai Lake basin. Stable isotopes of xylem water of four individual species were analysed at different dunes located at the eastern shore of Qinghai Lake in 2018 and 2019. The purpose of this study was to explore potential water sources used by different life form plants, to identify whether the soil moisture content and root distribution determined the plants water use patterns. Results from the Bayesian mixing model MixSIAR showed that all species mainly uses three levels of soil water, but they extracted soil water from different layers in different growing seasons among species. All species primarily depended on water from upper soil layers at the early growing stage, but P. sylvestris and S. cheliophe also absorbed much proportion middle and deep soil layers' water in dry year of 2019. All four species shift to use middle or deep soil layer water rather than shallow water in July with the most rainfall and soil water content (SWC). However, it was only used by P. sylvestris and H. rhamnoides in 2018. In all, seasonal water use pattern of different species was affected by SWC, soil texture and root distribution. Compared with moratorium plantations such as S. cheliophe, mixed afforestation of P. sylvestris and H. rhamnoides maximized of soil water sources absorbed by the plants. The study can shed light on plant–water relationships to facilitate the woody species for afforestation and desertification restoration management in the semi-arid desert ecosystem.  相似文献   

2.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

3.
Antecedent soil moisture or soil moisture status has a great impact on hydrological processes. Hydraulic redistribution (HR), a widely observed phenomenon, is defined as water distributed (typically at night) from moist soil to drier soil via plant roots, which plays an important role in soil moisture replenishment. Knowledge on seasonal patterns of HR and on the relationship between HR and soil water use is not fully understood. We investigated temporal variations in HR and total daily water use (Δθ) at stands of camphor and peach by monitoring soil moisture content in a humid region in eastern China. HR at the three locations reached its maximum values in summer (0.68 mm d−1 to 1.15 mm d−1) at depths of 15 cm and 35 cm. Redistributed water replenished 41% of water depleted in the soil at a 5–45-cm depth. Interestingly, normalized HR (i.e., HR/Δθ) showed a constant pattern during the growing season implying it is independent of seasonal climate alterations. This also indicated that HR had a stable effect on the replenishment of daily water use. Positive linear relationships between HR and Δθ were found at three measuring locations (camphor: R2 = .35, p < .01; peach1: R2 = .57, p < .01; peach2: R2 = .63, p < .01), suggesting a relatively stable inherent linkage between HR and Δθ. This study suggested that hydrological processes involving soil moisture status or antecedent soil moisture, needs to take the HR effect into account across timescales from intraday to seasonal.  相似文献   

4.
Phragmites australis invasion is altering plant communities and therefore, soil properties have been changed significantly. This study compared the diversity among three communities in a wetland to assess the impact of invasion by Phragmites and the associated impact on soil properties. Three diversity indices, species richness (S), evenness (E) and Shanon-Weiner index (H) had significantly higher values in uninvaded plots compared to invaded in all the communities. Invaded plots had the lowest diversity, with H = 0 and Simpson’s index (D) = 1, (i.e. they were monospecific). These results support the idea that a reduction in diversity can be expected in wetlands colonized by Phragmites. Phragmites invasion significantly increased soil moisture, EC, phenolics, organic carbon, dehydrogenase activity and microbial biomass (C, N, P) with reduction of pH and arbuscular mycorrhizae fungi spore density compared with uninvaded zones. In addition, the study of antifungal phytochemistry of Phragmites elucidated the decrease of the competitive abilities of native plant Melaleuca ericifolia by interfering with formation of mycorrhizal associations and biomass. Our results suggest that Phragmites invasion has caused significant ecological alterations in communities by demonstrating a combined effect to plant diversity and soil variables.  相似文献   

5.
Invasive noxious plants have important impacts on community dynamics and ecosystem functions in grasslands. Since the 1960s, the noxious plant Melica przewalskyi has spread rapidly and formed different size of patches in subalpine meadows of the Qilian Mountains, Northwest China. In this study, the species richness, vegetation structure, and soil water content are investigated from the patch edge to the center in four sizes of M. przewalskyi patches (i.e., small patch, <100 cm in canopy diameter; middle patch, 100–200 cm; large patch, 200–300 cm; and the largest patch, >300 cm). The results show that while the patches grow continuously, the dominant species changes from Stipa krylovii to M. przewalskyi with an increasing trend in plant productivity and decreasing trend in species richness and soil water content. Plant height, density, coverage, and above‐ground biomass of M. przewalskyi population increases from the patch edge to the center in small, middle, and large patches, whereas it is precisely the opposite in the largest patch. Interestingly, soil water content exhibits a decreasing trend from the patch edge to the center in all patches. The results indicate that the rapid spread of M. przewalskyi may well alter vegetation pattern and cause a severe soil moisture deficit, which would further drive the degradation of ecosystem functioning in subalpine meadows.  相似文献   

6.
Variations in carbon (C) and nitrogen (N) of the vegetation in a Tamarix chinensis coastal wetland located in Laizhou Bay, China, are analyzed. It is found that T. chinensis accumulates more C and N than the surrounding herbs, and it allocates more C and N in the aboveground parts but less in the roots. Branches store more C, whereas leaves and flowers accumulate more N than other tissues. The C and N contents in the aboveground parts of T. chinensis are mainly influenced by pH, electrical conductivity (EC), water content, and clay content in the top 100 cm of soil as well as the distance from the sea. For the herbs, their C contents vary little in the supratidal zone, but they are higher than those in the intertidal zone. However, N contents in the herbs are higher in the aboveground parts and varied among different communities. The contents of C and N in the herbs are affected by EC, water content as well as the contents of organic C and total nitrogen (TN) in the top 10 cm of soil. The findings confirm that increasing the biomass of T. chinensis is an effective way to increase C sequestration in temperate coastal wetland.  相似文献   

7.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

8.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima+Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima+Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland > T. ramosissima+Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P<0.01) in an exponential manner. The soil respiration of T. ramosissima+Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P<0.01). Based on the near-surface temperature, the calculated Q10 of Populus woodland, T. ramosissima+Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0–5 cm, 5–15 cm and 0–15 cm depths (P<0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0–5 cm depth (P<0.01).  相似文献   

9.
The influence of soil physicochemical properties and the relationship between the plant community and edaphic factors have been studied through monitoring the community dynamic parameters and analyzing the soil properties from four plant plots at the Pingshuo opencast coal mine eco‐reclamation area. The results are obtained as follows: (1) the law of the quantity variation of total N and available K is affected by the different kinds of plant configuration mode. It is Robinia pseudoacacia + Pinus tabuliformis (SIV) > R. pseudoacacia (SV) > R. pseudoacacia + P. tabuliformis (SI) > R. pseudoacacia + Ulmus pumila + Ailanthus altissima (SIII). The quantity is close to or exceeds the level of the original geomorphology. The average content of available N has the following order: SIV > SI > SIII > SV; the average content of available P SV > SIII > SIV > SI, both are far below the level of the original geomorphology; pH SIV < SIII < SI < SV; bulk density SI < SIV < SV < SIII, moisture content SIV > SIII > SI > SV; in the soil layer of 20–40 cm, except the available P, other physicochemical factors are in accordance with the factors of the surface soil; (2) the population average density, height and diameter at breast height (DBH) have no obvious relevance with the average density of the stumpage; (3) the average density, height, and DBH of R. pseudoacacia are closely related to pH and the content of available N and available P and all the index can be fitted by the equation of linear regression of the edaphic factors mentioned above. The principal component analysis shows that the magnitude of the impacts of three kinds of edaphic factors on the R. pseudoacacia population has the following order: pH > available N > available P. The average density of U. pumila is closely related to the moisture content of the soil. This regression model can be used to direct the cultivation and propagation of R. pseudoacacia and U. pumila population at the mine eco‐reclamation area.  相似文献   

10.
Understanding the water use characteristics and water relationship of coexisting vegetation in a mixed-species plantation of trees and shrubs is crucial for the sustainable restoration of degraded arid areas. This study investigated the water use characteristic of coexisting sand-binding vegetation combinations in the sierozem habitat (Populus przewalskii Maxim namely Populus-S and Caragana liouana) and aeolian sandy soil habitats (Populus przewalskii Maxim namely Populus-A and Salix psammophila) of the desert steppe. By analysing the δ2H and δ18O isotopes in xylem, soil water, groundwater and precipitation, a Bayesian MixSIAR model was employed to quantitatively assess the water utilization characteristics of plants. Throughout the growing season, in the sierozem habitat, C. liouana exhibits the highest efficiency in utilizing soil moisture above 60 cm (53.45%) and displays adaptable water use strategies. In contrast, Populus-A predominantly relies on deep soil moisture below 60 cm plus groundwater (63.89%). In the aeolian sandy soil habitat, both Populus-A and S. psammophila similarly favour deep soil moisture below the 60 cm soil plus groundwater (66.77% and 67.60%, respectively). During the transition period from the dry to the wet seasons, although both Populus-A and S. psammophila in the aeolian sandy soil habitat shifted their water sources from deeper to shallower ones, there was considerable overlap in the water sources used by Populus-A and S. psammophila. This overlap led to competition for water resources and exacerbated the depletion of deep soil moisture in both seasons. Conversely, in the sierozem habitat, the partitioning of water sources between Populus-S and C. liouana facilitated the allocation and utilization of water resources between the two species. The findings highlight the need for species-specific consideration in water resource allocation within mixed-species plantations of trees and shrubs, which is crucial for sustainable vegetation restoration in sand-binding ecosystems.  相似文献   

11.
Riparian vegetation is important for stream functioning and as a major landscape feature. For many riparian plants, shallow groundwater is an important source of water, particularly in areas where rainfall is low, either annually or seasonally, and when extended dry conditions prevail for all or part of the year. The nature of tree water relationships is highly complex. Therefore, we used multiple lines of evidence to determine the water sources used by the dominant tree species Eucalyptus camaldulensis (river red gum), growing in riparian and floodplain areas with varying depth to groundwater and stream perenniality. Dendrometer bands were used to measure diel, seasonal, and annual patterns of tree water use and growth. Water stable isotopes (δ2H and δ18O) in plant xylem, soil water, and groundwater were measured to determine spatial and temporal patterns in plant water source use. Our results indicated riparian trees located on relatively shallow groundwater had greater growth rates, larger diel responses in stem diameter, and were less reactive to extended dry periods, than trees in areas of deep groundwater. These results were supported by isotope analysis that suggested all trees used groundwater when soil water stores were depleted at the end of the dry season, and this was most pronounced for trees with shallow groundwater. Trees may experience more frequent periods of water deficit stress and undergo reduced productivity in scenarios where water table accessibility is reduced, such as drawdown from groundwater pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to changing groundwater conditions may depend on the speed of change, the local hydrologic and soil conditions as well as the species involved. Our results suggest that Ecamaldulesis growing at our study site is capable of utilizing groundwater even to depths >10 m, and stream perenniality is likely to be a useful indicator of riparian tree use of groundwater.  相似文献   

12.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   

13.
鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征   总被引:3,自引:0,他引:3  
湿地植被空间分布受多个水分因子共同影响,为了探求鄱阳湖典型洲滩湿地不同植被类型下地下水、土壤水的变化特征,本文选择鄱阳湖吴城湿地保护区内一个长约1.2 km的典型洲滩湿地为实验区,建立了气象-土壤-水文联合观测系统.对观测的气象、水文要素进行分析发现:(1)洲滩湿地地下水位年内呈单峰变化,季节性差异显著,最大埋深可达10 m,出现在1月份,丰水期8月份地下水位最高时可出露地表,且地下水位与湖泊水位变化具有高度一致性;(2)由远湖区高地至近湖区低地,不同植被带中地下水平均埋深变化为藜蒿带(4.76 m)芦苇带(2.87 m)灰化薹草带(1.61 m).地下水埋深小于50 cm的持续时间分别为:藜蒿带27 d、芦苇带112 d、灰化薹草带170 d;(3)土壤平均含水量沿不同植被带梯度变化为:藜蒿带最小(15.9%),芦苇样带(40.7%)和灰化薹草样带(43.7%)较大.土壤含水量年内变幅为:藜蒿带最大(2.5%~55.2%),芦苇带和灰化薹草带相对较小,分别为22.1%~48.1%和28.4%~54.1%;(4)不同植被带土壤含水量季节变化规律不同,藜蒿带土壤含水量年内呈单峰型,仅夏季土壤含水量较高,其余季节均在10%左右,而芦苇带和灰化薹草样带春、夏、秋季均维持较高含水量(42%以上),仅冬季水分含量较低.  相似文献   

14.
Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its δ18O showed large interannual variation depending on the amount of summer rainfall. The soil water δ18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the δ18O of soil water increased due to percolation of summer rain with high δ18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the δ18O because of the low δ18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra‐annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Water is a major limiting factor in desert ecosystems. In order to learn how plants cope with changes in water resources over time and space, it is important to understand plant–water relations in desert region. Using the oxygen isotopic tracing method, our study clarified the seasonal changes in the water use strategies of three co‐occurring desert shrubs. During the 2012 growing season, δ18O values were measured for xylem sap, the soil water in different soil layers between 0 and 300 cm depth and groundwater. Based on the similarities in δ18O values for the soil water in each layer, three potential water sources were identified: shallow soil water, middle soil water and deep soil water. Then we calculated the percentage utilization of potential water sources by each species in each season using the linear mixing model. The results showed that the δ18O values of the three species showed a clear seasonal pattern. Reaumuria songarica used shallow soil water when shallow layer was relatively wet in spring, but mostly took up middle soil water in summer and autumn. Nitraria tangutorum mainly utilized shallow and middle soil water in spring, but mostly absorbed deep soil water in summer and autumn. Tamarix ramosissima utilized the three water sources evenly in spring and primarily relied on deep soil water in summer and autumn. R. songarica and N. tangutorum responded quickly to large rainfall pulses during droughts. Differential root systems of the three species resulted in different seasonal water use strategies when the three competed for water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The paper presents a study by taking the soil seed banks and vegetation successions of the forests in Ziwuling Mountain as indicators to analyze the effects of the ages, and the litter layers and soil depths at growing locations in seven types of forest communities on their seed bank formations and soil quality. The results showed that the seed banks at different growing locations in the communities increased in the order of upper slope, middle slope, and lower slope; the seed storages of the seed banks in the different layers of the communities varied, much more higher in the litter layers than in 0–15 cm, and the seed storages of the seed banks in the seven types of forest communities ranked in the increasing order of Pinus tabulaeformis forest, Pinus shenkaneusis forest, Quercus liaotungensis forest, Populus davidiana forest, Betula platyphylla forest, scrub communities, and grassland communities; in the meantime, the seed storage of seed banks peaked in 30–50 years old P. shenkaneusis forest, 30–40 years old P. tabulaeformis forest, 15–30 years old Q. liaotungensis, and P. davidiana and B. platyphylla forests, and 10–15 years old scrub and grassland communities, and the ages of the communities varied with the seed storages of the seed banks in a significantly correlative manner following a fitted exponential equation. In addition, the soil seed banks of the seven types of communities consisted of rich and diverse species with the herbaceous and shrub species greatly outnumbering the arbor species; in general, the coniferous forests were composed of 31 kinds of plants, the deciduous and broadleaf forests consisted of 20–29 plant species, the shrubs contained 27 plant species, and the herbaceous plants numbered 20 plant species; The various species compositions contained only 4–6 arbor species with most being foreign species. In each of the compositions, Bothriochloa ischemum was the grassland plant with the highest occurrence frequency, Sophora viciifolia and Hippophae reamnoides were the shrub plants with the highest occurrence frequencies, and Q. liaotungensis was the arbor plant with the highest occurrence frequency, and they followed by P. shenkaneusis and P. tabulaeformis. These results showed that soil seed banks and forest successions are better indicators for soil quality from natural successions.  相似文献   

17.
为明确消落区土壤养分对植物生长的影响,通过室内栽培试验,研究三峡库区秭归消落区土壤3种氮磷水平下4种草本植物—鬼针草(Bidens pilosa)、苍耳(Xanthium sibiricum)、水蓼(Polygonum hydropiper)、藜(Chenopodium album)长势及氮、磷计量特征.结果表明,消落区土壤中生长的植物氮含量为7.98~19.4 mg/g,磷含量为0.740~3.880 mg/g,氮磷比为3.48~13.70,判别植物生长受氮限制.外源氮磷的添加促进植物氮、磷含量明显升高,但氮磷比没有明显变化;外源氮磷添加解除植物受氮的限制作用.4种植物对消落区土壤低氮环境具有一定的适应能力.比较消落区土壤中4种植物长势,鬼针草生物量、相对生长率、根茎生物量比最高,氮磷养分丰富对鬼针草生长促进作用最明显,表明鬼针草更易于在氮、磷贫乏的三峡库区消落区形成优势群落.  相似文献   

18.
Plant water use plays a crucial part in the soil–plant-atmosphere continuum. However, in karst regions, plants frequently suffer from water shortages due to low soil water storage capacity. Therefore, it is necessary to understand plant water consumption (as determined by sap flow) and seasonal variation of water sources to improve water management in karst catchments. In this study, thermal dissipation probes (TDP), calibrated using empirical equations, were used to measure the sap flow of three typical woody vegetations, including Coriaria nepalensis (sparse-shrub), Toona sinensis (secondary forest) and Populus adenopoda (shrub-grass). Oxygen and hydrogen stable isotopes were used to analyze seasonal variation of plant water sources. The results showed that: (1) T. Sinensis (3.89 ± 3.87 L·day−1) had significantly higher daily sap flow than C. nepalensis (0.33 ± 0.37 L·day−1) and P. adenopoda (0.09 ± 0.12 L·day−1); (2) daily sap flow was closely correlated to photosynthetically active radiation (PAR) and vapour pressure deficit (VPD); (3) over the entire study period, plants mainly used water from the surface soil horizons; and (4) a greater proportion of epikarst water was used for C. nepalensis than by T. sinensis and P. adenopoda over the whole growth stage, and more epikarst water was used in early and mid-growth stages compared to the late stage for the three species. This study contributes to a deeper understanding of the plant water use strategies in karst regions, and is helpful for ecosystem management.  相似文献   

19.
The classical aim of the application of super absorbent polyacrylate (SAPs) hydrogels is the prolonging of plant survival under water stress. Their effect on plant growth during non‐water stress conditions is not known. This study examined the root and shoot biomass of seedlings of nine tree species; Eucalyptus grandis, Eucalyptus citriodora, Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Grevillea robusta, Azadirachta indica, Maesopsis eminii and Terminalia superba. The seedlings were potted in five soil types; sand, sandy loam, loam, silt loam and clay. These were amended at two hydrogel levels: 0.2 and 0.4% w/w and grown under controlled conditions in a green house. Root and shoot growth responses of the seedlings were determined by measuring the dry weight of the roots, stems, leaves and twigs. The addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in a significant increase of the root dry weight (p < 0.001) in eight tree species compared to the controls after 8 wk of routine watering. Also, the dry weight of stems and leaves and twigs were significantly (p < 0.001) higher in the nine tree species potted in hydrogel amended soil types than in the hydrogel free controls. These results suggested that hydrogel amendment enhances the efficiency of water uptake and utilization of photosynthates of plants grown in soils which have water contents close to field capacity.  相似文献   

20.
This analysis compares decreases in soil moisture (SM) at Utah snow telemetry (SNOTEL) sites during the summer months with discharge at nearby stream gauging locations using data from water years 2008–2012. The following characteristics were evaluated: (1) the influence of the SM loss at mid‐depths (20 cm) on hydrograph recession, (2) the influence of moisture loss from deeper portions of the soil (50 cm) on late‐season baseflow and (3) the timing of this transition. Thirty‐four pairings were used between SNOTEL sites and nearby stream gauges in select locations throughout Utah, for 3–5 years each depending on data quality, to generate 143 total comparisons of soil moisture loss and stream discharge. Regressions were fairly strong (r2 > 0.8) where the SNOTEL site was in a location with slow meltout rates, ample infiltration and minimal summer precipitation. In a few cases, the correlation was remarkably strong (r2 > 0.95), even for SNOTEL sites located far from respective stream gauges (e.g. >30‐km, >1000‐m elevation difference for the best pairing). At such sites, transition timing in 2013 (between predominantly 20‐ vs 50‐cm SM loss) was well predicted from 2012 data given the similarity in water years, with discharges at the transition point less than 30% different than observed values in 2013. An index of the robustness of each pairing was generated to determine where this type of analysis might be most successful; however, results suggest that identification of high‐quality pairings may need to be site by site. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号