首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide.  相似文献   

2.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

3.
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.  相似文献   

4.
This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts. The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula. It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock, with high correlation coefficients of 0.7651 and 0.8587, respectively. The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field. Conversely, due to the poor interlocking at the initial pullout load, the measured displacements were higher than the estimated ones. To reduce the interlocking effects between bolt and rock, we recommend preloading of 29.4 kN. Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.  相似文献   

5.
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes >2 mm. The effects of rock fragments <2 mm in soil are generally ignored. Similar to rock fragments >2 mm, the presence of rock fragments <2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of <2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of <2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of <2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containing <2 mm rock fragments mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that <2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment.  相似文献   

6.
孔隙特征作为反映黄土微观结构的重要特征之一,直接影响黄土的水敏性、渗透性和强度等物理力学性质。为了研究水力耦合作用下黄土微观孔隙结构特征,使用CT技术对天然原状、原状饱和与重塑黄土的初始结构以及不固结不排水剪切试验后的土体结构进行了扫描,通过建立黄土三维结构模型,分析了剪切试验前后孔隙结构的演变特征。结果表明:饱和与重塑作用使天然原状黄土的大孔隙减少,剪切作用使天然原状黄土和重塑黄土发生剪切破坏,原状饱和黄土发生压缩破坏,局部孔隙率增加。天然原状黄土与原状饱和黄土在剪切前后均表现为微孔和小孔数量较多,其孔隙倾角主要分布在50°~90°之间,解释了黄土亚稳态结构形成的主要原因。扰动作用使重塑黄土的孔隙尺寸分布均匀,且重塑黄土与原状饱和黄土在水力作用下更易失稳屈服。揭示了黄土剪切变形破坏的微观结构主要表现为粒间胶结物的溶解、孔隙的坍塌与填充以及颗粒旋转、破碎和滑移。试验结果可为黄土剪切强度降低和湿陷机理研究提供依据。  相似文献   

7.
Glacial tills are widely distributed in Tibet, China, and are highly susceptible to landslides under intense rainfalls. Failures of the slope during rainfall are closely related to the shear behavior of glacial tills at different moisture conditions. This study investigates the shear behavior and critical state of saturated and unsaturated glacial tills through a series of drained direct shear tests. The tests were conducted on two types of compacted glacial tills with different water contents and total normal stresses. A strain softening mode of failure is observed for all water content conditions accompanied by noticeable dilation. Dilatancy is found to decrease with increasing water content. Unsaturated samples showed increased rates of dilation as water content is decreased for all applied normal stresses a behavior which cannot be predicted well by classical stressdilatancy models. Furthermore, it was found that the Critical State Line(CSL), plotted on the(e-ln) plane, can be used to define the shear behavior of unsaturated glacial tills at different water contents.The CSL of saturated glacial tills run parallel to this line. The experimental results in this study are aimed to provide a basic understanding to the underlying failure mechanisms of glacial tills.  相似文献   

8.
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.  相似文献   

9.
There exist many fluvio-glacial deposits in the valley of Dadu River,Southwest China,which dates back to the Pleistocene.As some of the deposits are located within the seasonal water fluctuation zone of reservoirs,the seepage of groundwater acts as one of the key factors influencing their stability.Investigation into the sediment properties and permeability is,therefore,crucial for evaluating the sediment stability.In this study,in-situ permeability and sieving tests have been carried out to determine grain size distribution,correlations of permeability and hydraulic gradients,and relations between permeability and sedimentation properties.Test results indicate that the deposits are composed mostly of sands,gravels,cobbles and boulders,and the percentage of fines is less than 5%.The sediments have high densities,low porosities and natural moisture contents.At low hydraulic gradients,the seepage velocity obeys the Darcy’s law,while a nonDarcy permeability is observed with hydraulic gradient exceeding a certain value(about 0.5-0.7).The linear permeability coefficient ranges from 0.003 to 0.009 cm/s.Seepage failure occurs above a threshold between 1.1 and 1.5.The test data fit well with the non-linear permeability equations suggested by Forchheimer and Izbash.The non-Darcy permeability proves to be in accordance with the seepage equation suggested by Izbash with the power ’m’ of about 0.6-0.7.The characteristic grain sizes of the studied deposits are found in a narrow range between 0.024 and 0.031 mm,which is much lower than the effective grain size(d 10).  相似文献   

10.
Moisture and salt content of soil are the two predominant factors influencing its shear strength. This study aims to investigate the effects of these two factors on shear strength behavior of loess in the Xining Basin of Northeast Qinghai-Tibet Plateau, where such geological hazards as soil erosion, landslides collapse and debris flows are widespread due to the highly erodible loess. Salinized loess soil collected from the test site was desalinized through salt-leaching in the laboratory. The desalinized and oven-dried loess samples were also artificially moisturized and salinized in order to examine how soil salinity affects its shear strength at different moisture levels. Soil samples prepared in different ways(moisturizing, salt-leaching, and salinized) were measured to determine soil cohesion and internal friction angle. The results show that salt-leaching up to 18 rounds almost completely removed the salt content and considerably changed the physical components of loess, but the soil type remained unchanged. As salt content increases from 0.00% to 12.00%, both the cohesion and internal friction angle exhibit an initial decrease and then increase with salt content. As moisture content is 12.00%, the salt content threshold value for both cohesion and internal friction angle is identified as 3.00%. As the moisture content rises to 16.0% and 20.00%, the salt content threshold value for cohesion is still 6.00%, but 3.00% for internal friction angle. At these thresholds soil shear strength is the lowest, below which it is inversely related to soil salinity. Beyond the thresholds, however, the relationship is positive. Dissimilar to salinity, soil moisture content exerts an adverse effect on shear strength of loess. The findings of this study can provide a valuable guidance on stabilizing the engineering properties of salinized loess to prevent slope failures during heavy rainfall events.  相似文献   

11.
Sedimentary environment of vermicular red clay in South China   总被引:1,自引:0,他引:1  
Increasing interest in recent years has focused on vermicular red clay(VRC) in southern China due to its controversial sedimentary environment and provenance. Grain size is a useful way to determine sedimentary environment and provenance. Fisher Linear Discriminant Analysis(LDA) is a common and widely used method for multivariate statistical analysis. Based on a proper training sample set, the LDA can be used to discuss the sediment provenance. In this study, grain size data for 77 Malan loess samples and 41 floodplain deposit samples were used as a training sample set to deduce a Fisher linear discriminant function. Then, 299 VRC samples from 6 Quaternary red clay profiles were analyzed using the discriminant function. Grain size parameters and microscopic images of quartz grains separated from the VRC were evaluated in detail to determine the VRC sedimentary environment in south China. The results show that VRC profiles can be classified into two regions: the Chiang-nan Hilly Region and Wuyi Mountains Region. The VRC samples in the Chiang-nan Hilly Region originated from eolian dust deposits. This VRC is characterized by a higher content of fine particles(20 μm) and lower average transport kinetic energy than loess in a C-M plot. The quartz grain sizes and microscope images of this VRC suggest that it could be a polyphyletic mixture of far-sourced and nearsourced eolian deposits. The far-sourced eolian deposits share similar provenance with Xiashu loess and were transported by the East Asian winter monsoon. The near-sourced eolian deposits were dust emitted from the adjacent floodplain. In the Wuyi Mountains Region, the rugged topography weakened the dustfall and strengthened the reconstructive effect of hydrodynamic forces during the Quaternary glacial periods. The VRC in this region was reworked strongly by water and retained typical hydraulic characteristics no matter the source.  相似文献   

12.
水库蓄水后,滑坡体碎石土经受长时期的浸泡,力学性质发生改变,从而影响滑坡整体稳定性。为探究浸泡对碎石土力学性质的影响规律,选取三峡库区马家沟滑坡后缘未经受长期浸泡作用的碎石土进行大型直剪试验,分析了不同浸泡天数下碎石土的剪切力学性质。试验结果表明:浸泡40 d后,碎石土黏聚力下降幅度达39%,内摩擦角下降幅度为8.3%;碎石土黏聚力在浸泡前期快速下降,下降速率随浸泡天数增加而降低,浸泡20 d后,黏聚力基本达到稳定。为探究碎石土抗剪强度降低的原因和机理,对粉质黏土(碎石土细粒成分)进行了三轴剪切试验、激光粒度分析及浸出液阳离子分析等试验,揭示了碎石土抗剪强度的衰减机理为:浸泡作用下,碎石土中的粉质黏土发生矿物溶解、离子交换与吸附作用,土体中大颗粒细化,胶结作用减弱,进而导致碎石土整体抗剪强度降低。研究结果对库区碎石土滑坡评价与治理具有一定的指导意义。  相似文献   

13.
沙漠风积沙稳定性差,采用水泥作为固化剂进行风积沙固化,是改善风积沙性质和实现风积沙资源化利用的有效手段。以取自内蒙古库布齐沙漠的风积沙为材料,制备3%含水量的重塑风积沙,掺入水泥固化剂并充分拌匀而形成固化风积沙,开展水泥固化风积沙的抗剪、抗压和抗拔承载性能试验。结果表明,水泥掺量对固化风积沙黏聚强度的提高程度要大于内摩擦角。含水量3%的风积沙掺入6%的水泥经28 d常温养护的固化风积沙无侧限抗压强度平均值为0.156 MPa。固化风积沙扩展基础抗拔荷载-位移曲线呈现初始弹性段至峰值荷载以及峰值荷载后破坏的两阶段脆性破坏特征。水泥固化提高风积沙抗拔承载性能效果显著,且与基础底板尺寸、抗拔埋深及基础深宽比等因素有关。  相似文献   

14.
Seepage-induced fines migration under rainfall infiltration is a main cause leading to shallow failures in loose colluvial slopes. To describe the full process of fines migration within unsaturated soils during rainfall infiltration and the associated hydro-mechanical behaviors, a seepage-erosion-deformation coupled formulation is proposed in this paper. The governing equations proposed are implemented into a finite element code and used to investigate the influences of skeleton deformation on the rainfall infiltration process through unsaturated soil columns. The numerical results were presented in detail for a better understanding of the rainfall-induced fines migration process within unsaturated soils. Further, the obtained results are integrated into an infinite slope model for slope stability analysis. The results show that, the skeleton deformation will affect the rainfall infiltration rate and hence the timing of slope failures; meanwhile their influences are more evident if the fines deposition process is taken into account. Moreover, the slope stability could be reduced gradually due to the soil strength loss along with loss of fine particles. Therefore, particular attentions should be paid to analyzing the stability of soil slopes susceptible to internal erosion.  相似文献   

15.
《山地科学学报》2020,17(9):2224-2240
Soil-rock mixtures containing macropore(SRMCM) is a kind of geological material with special mechanical properties. Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province, China, there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters, which is mainly composed of SRMCM. The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation. In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size, and the angle of the macropore structure on shear characteristics of SRMCM. The failure mechanism of SRMCM was discussed from a microscopic perspective. This work explains the internal mechanism of the influence of stone content,stone size, and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation, force chain distribution, and crack propagation. As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force, the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.  相似文献   

16.
研究不同环剪条件下库岸堆积层滑坡滑带土强度特性对滑坡稳定性评价具有重要意义。针对目前在库岸堆积层滑坡滑带土力学特性方面研究薄弱的问题, 以三峡库区童家坪滑坡滑带土为研究对象, 采用ARS-E2环剪仪开展了不同剪切速率下的剪切试验, 研究了等速剪切、加速剪切以及减速剪切作用下滑带土强度变化特征。试验结果表明: 滑带土试样在恒定的低速剪切条件下更容易得到稳定的残余强度, 并且达到峰值强度后易出现"应变软化"现象; 在相同剪切应力条件下, 滑带土加速环剪和减速环剪的剪应力变化趋势基本一致, 与法向应力均呈正相关关系; 剪切速率的变化会显著影响滑带土峰值黏聚力的大小。研究成果揭示了不同环剪条件下滑带土力学特性, 可以为揭示库岸堆积层滑坡变形破坏的力学机制提供理论依据。   相似文献   

17.
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.  相似文献   

18.
Glacial tills are highly compressible soils composed of loosely cemented sandy silt particles. Their role, for instance, as initial filler materials in geo-technical projects along temperate glacier regions warrant a systematic evaluation of their compressive characteristics. As such, we carry out a series of onedimensional compression tests on re-compacted glacial till samples obtained from Tianmo Gully, Tibet, with the aims of evaluating their compressive behavior under controlled initial stress conditions. The yield stress was determined from the void ratio versus consolidation pressure(e-log) planes. Its compression and swelling behaviors were observed during the primary and secondary compressions of the consolidation tests. From the compression curves, a correlation can be found between the consolidation stress and the void index. In addition, we find that the compression curves of glacial tills collapse into a single curve when normalized by the compression index. The experimental results in this study provide a basic understanding of the compression characteristics of the glacial tills in Tibet, China.  相似文献   

19.
强对流或台风等极端天气下乔木坡地发生浅层滑坡灾害往往是暴雨和强风共同作用的结果。以皖南山区一处暴雨型浅层滑坡——畈章组滑坡为例, 通过现场调查和气象资料的分析表明, 除暴雨外风荷载也有可能促进滑坡的启动。为揭示该滑坡启动与破坏后这一完整运动过程的演化机制, 首先基于无限斜坡模型分析了实际降雨条件下的滑坡稳定性, 然后对取自于滑坡体内乔木根系周围和滑动面附近的两种土样利用DPRI型环剪仪, 分别开展了不排水循环剪切试验和自然排水残余剪切试验。结果表明: ①降雨入渗引起滑动面孔隙水压力的上升, 并导致稳定性的降低是畈章组滑坡启动的直接原因; ②乔木根系周围的饱和土在风振作用产生的动剪切荷载下易形成高的超孔隙水压力, 并导致浅表层的局部失稳滑动, 增加了畈章组滑坡整体破坏的可能性; ③滑动面土体的残余强度具有强烈的"正速率效应", 从而控制了畈章组滑坡启动后不会表现出高速远程的运动特征, 与现场调查结论一致。研究结果可以为暴雨协同风振作用下富乔木坡地浅层滑坡的预警预报研究提供参考。   相似文献   

20.
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号