首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jean-Luc Epard  Albrecht Steck   《Tectonophysics》2008,451(1-4):242-264
A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of > 90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103–50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of > 90 km (> 27 kbar) and temperatures of 500 to 600 °C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 °C/km. An intense schistosity with a W–E oriented stretching lineation L1 and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata–Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L2 and L3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.  相似文献   

2.
The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.  相似文献   

3.
特提斯喜马拉雅发育与造山带平行的片麻岩穹窿构造带,其与喜马拉雅金锑、铅锌多金属、锡钨铍多金属矿具有密切的时空关系.西藏扎西康铅锌多金属矿集区是喜马拉雅造山带最具特色的矿集区,集中产出20余处不同规模的金锑、铅锌、锡钨铍多金属矿床.矿集区内矿床围绕错那洞穹窿呈规律性分布,体现为从穹窿核部向外依次分布铍钨锡稀有金属矿→铅锌多金属矿→金锑矿.这些矿床分布特征与区域1:5万区域水系沉积物分析结果一致,从错那洞片麻岩穹窿核部—淡色花岗岩内部及其接触带到外围表现为W、Sn、Bi、Rb等高温元素→Pb、Zn、Ag、Sb等中温元素→Au、Sb、Ag、Hg、As等中低温元素异常组合.错那洞穹窿形成于中新世,该时期伴有大量的淡色花岗岩(23~14 Ma)侵位,此时也迎来了扎西康矿集区"成矿大爆发"(21~12 Ma).矿集区内典型矿床的H-O同位素组成表明,各矿床均显示有岩浆热液不同程度的贡献.矿石矿物的Pb同位素特征表明,锡钨铍来自于淡色花岗岩,铅锌具有多源性,既可以来自于淡色花岗岩,亦可以来自于古老基底物质,而金锑主要来自于与幔源作用有关的基性岩及玄武岩.结合矿集区内矿床的时空分布特征、流体及物质来源特点,文章认为扎西康矿集区内多金属矿床形成是喜马拉雅带成穹作用引发的构造-岩浆-成矿事件,构成了受穹窿控制的金锑-铅锌-锡钨铍稀有多金属成矿系统.自中新世以来,喜马拉雅造山带处于伸展活动时期,发育多期次的淡色花岗岩深熔作用,并在错那洞侵位形成片麻岩穹窿.深熔淡色花岗岩具有较高的演化程度,演化后期出溶富集Be-W-Sn-Rb的岩浆流体.在岩浆侵位过程引发的高异常地热梯度作用下,岩浆流体向外扩散,在岩浆顶部形成伟晶岩型铍铷稀有金属矿,在岩体边部与大理岩交代形成矽卡岩型铍稀有多金属矿,在错那洞穹窿拆离断裂及近南北向张性断裂中形成锡石-硫化物脉型锡多金属矿.岩浆流体在向外渗流过程中,萃取各类地质体中的成矿元素,并与大气降水、地热循环水不同程度的混合,在外围的张扭性断裂中形成铅锌,在温度更低的压扭性断裂中形成金(锑)矿.  相似文献   

4.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

5.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


6.
Metasediments in the Tso Morari area (Ladakh, Himalaya) provide new insights into the Higher Himalayan metamorphism in the northwestern part of the Himalayan belt. Whole-rock analyses and petrologic observations show that the metasediments correspond to Fe-rich metapelites, Mg-rich metapelites, intermediate metapelites and metagreywackes of the Indian continental margin. Jadeite + chloritoid + paragonite + garnet in the Fe-rich metapelites indicate pressures of 20 ±2 kbar at temperatures of 550 ±50 °C according to major element partitioning thermobarometry, stability fields of minerals and Thermocalc P-T estimates. These results are consistent with P-T estimates on other metasediments and with the occurrence of eclogites. Subsequent retrogression at the eclogite-blueschist facies transition (from 18 to 13 kbar and 540 ±50 °C) was followed by an increase in temperature to 630 ±30 °C at amphibolite facies conditions. The metamorphic evolution is related to subduction of the Indian continental margin beneath the southern Asian margin at the onset of the Indian-Eurasian collision. Received: 17 April 1996 / Accepted: 19 February 1997  相似文献   

7.
Structural geological field work, microscopic and magnetic fabric studies have been applied in order to assess the structural origin of a gneiss dome, based on a regional example from the Neoproterozoic Pan-African Belt of NE Africa, the Wadi Hafafit Culmination (WHC). The culmination is dominated by a number of major shear zones, which form both the boundaries between the gneissic core and surrounding low grade successions as well as those of minor structural units within the gneisses. These shear zones form a linked fault system, which, based on shear criteria, fault-bend fold and overall geometric interrelationships, can be classified as an antiformal stack. The relative age sequence of the shear zones/thrusts with the highest thrust oldest and the lowermost youngest points to a forward-propagating thrust system. This, together with the shear criteria, exclude an origin of the WHC as a metamorphic core complex, where the highest shear zone should be youngest. The geometry of the WHC antiformal stack is documented by maps and sections as well as section balancing and restoration. Microscopic work showed brittle deformation in feldspar and dynamic recrystallization in quartz ribbons. The asymmetry of the fabric confirmed the macroscopically determined shear sense. However, there is one example of an earlier, perhaps extensional shear movement. Mylonitic foliation and transport-parallel lineation have also been determined by magnetic fabric studies. The observations suggest that thrusts may cut across both previously folded crystalline rocks as well as homogeneous granitoid plutonic bodies. According to the regional tectonic picture the large-scale structure of the gneiss dome originated after a phase of (late-orogenic) extensional collapse. It is speculated that during late-orogenic cooling the upper part of the lithosphere was sufficiently strong to allow brittle thrusting whilst the lithosphere as a whole was still weak enough to allow large-scale compressional deformation, perhaps in a transitional stage from lateorogenic to intra-cratonic deformation.  相似文献   

8.
川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因   总被引:1,自引:0,他引:1  
片麻岩穹隆是造山折返过程形成的重要构造样式。马尔康锂矿床位于松潘-甘孜造山带腹地的马尔康片麻岩穹隆中,其核部为太阳河花岗闪长岩和可尔因花岗岩、幔部由经过变质作用的晚三叠世深海—半深海复理石和浊积岩组成,大量含锂伟晶岩脉侵位于红柱石-十字石变质带中。通过野外地质调查和构造分析,在马尔康片麻岩穹隆中识别出三期构造变形叠加于造山早期大规模收缩变形之上:第一期变形(D1)为南向的大型高温拆离剪切带(马尔康拆离断层,MRKD);第二期变形(D2)为马尔康"穹隆构造";第三期变形(D3)为后期叠加的新生代近东西向逆冲断层。新的锆石U-Pb年代学数据表明太阳河和可尔因岩体的结晶年龄分别为226~212 Ma与224~218 Ma,马尔康拆离断层中平行剪切面理的同构造变形伟晶岩脉形成于约212~207 Ma,而未变形含锂伟晶岩脉则形成于200~190 Ma之间。研究表明,马尔康片麻岩穹隆在造山早期伴随220~212 Ma的花岗岩侵位,形成中低压巴罗式变质作用;在挤压向伸展转换过程(212~207 Ma)中,形成向南剪切的拆离断层以及变质核杂岩构造,致使花岗岩浆底辟上涌和片麻岩穹隆的形成;200~190...  相似文献   

9.
10.
错那洞穹隆是北喜马拉雅片麻岩穹隆带(NHGD)中发现的新成员,穹隆由核-幔-边3部分组成。核部由寒武纪花岗质片麻岩组成,幔部由早古生代云母片岩和矽卡岩化大理岩组成,边部由变质沉积岩组成。在穹隆核部侵入有大量淡色花岗岩和伟晶岩脉。通过系统的地表工程控制,在穹隆幔部中新发现了环穹隆展布、层位稳定的矽卡岩带和厚大的铍铷稀有金属工业矿体。通过对错那洞穹隆东部矿带典型矿区的解剖,初步把矿床的类型定为热液型稀有金属矿床,在碳酸盐赋矿层位中形成富铍、铷、钨、锡的矽卡岩型矿床。铍铷稀有金属矿具超大型的资源潜力,钨锡也达大型规模。错那洞铍铷稀有金属矿主要的矿床类型为矽卡岩型。此外,还有伟晶岩型稀有金属矿、锡石硫化物型锡多金属矿。文章研究矿体特征和总结矿床类型,提出了下一步的找矿方向。  相似文献   

11.
The Great Himalayan Range and the Central Crystalline Axis are two different units. The Axis came into existence much before the Himalayan orogeny and formed a barrier between the Tethys and the Himalayan geosynclines. Observations indicate that its existence is not a consequence of continental drift. Geological records show that the Indian shield was not involved in the continental drift to the extent postulated in the drift hypothesis.  相似文献   

12.
13.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   

14.
One of the Pre-Siwalik foreland basin sedimentary units, the Dumri Formation, is tectonically covered by the Lesser Himalayan Crystalline nappe and the Kuncha-Naudanda thrust sheet. It is narrowly distributed in the eastern margin of the Karnali klippe along the NNE–SSW trending Chakure Fault. The whole sequence of the fluvial Dumri Formation attaining 1500 m in thickness is weakly metamorphosed to muscovite phyllite and foliated phyllitic sandstone. The metamorphic grade decreases stratigraphically downward and underlying Nummulitic limestone of the middle Eocene Bhainskati Formation is converted into a slaty limestone. No metamorphic mica is detected from the late Cretaceous to Paleocene Amile Formation below the Bhainskati Formation. These facts indicate that the Tansen Group has undergone inverted metamorphism.A 40Ar/39Ar plateau age of 25.69±0.13 Ma was obtained from garnetiferous biotite gneiss in the lower part of the crystalline nappe. Another 40Ar/39Ar age spectrum from muscovite phyllite of the Dumri Formation suggests that metamorphism occurred at 16–17 Ma. The origin of the inverted metamorphism limited to the uppermost part of the Lesser Himalayan autochthon can be attributed to heat from the hot crystalline nappe and shearing along the sole thrust of the Kuncha-Naudanda thrust sheet. The depositional age of the Dumri Formation is estimated to be 26–17 Ma.Provenance of the Dumri Formation is considered to be from the Naudanda Quartzite, the Kuncha Formation and the Tibetan Tethys sediments, because the sandstone contains orthoquartzite pebbles, phyllitic lithic fragments and a sparry calcite cement. The sedimentary facies indicates deposition by meandering rivers on flood-plains in the distal part of the foreland basin. No proximal facies, such as alluvial fan and pebbly braided river deposits, could be detected from the formation, though it is near the Main Central Thrust (MCT). The northern continuation of the foreland basin sediments must be concealed beneath the Higher Himalayan Crystalline. Judging from the present distribution of the Dumri Formation from the south of the Main Boundary Thrust (MBT) to near the MCT and from the shortening of the Lesser Himalayan sediments by thrusts and folds, the width of the foreland basin where the Dumri Formation was deposited is estimated to have been more than 300 km.  相似文献   

15.
错那洞穹窿是喜马拉雅造山带北部发育的一系列片麻岩穹窿之一,因其赋存有超大型稀有金属矿床而倍受关注。本文对错那洞穹窿核部产出的石榴石十字石蓝晶石白云母片岩进行了岩石学、相平衡模拟和锆石U-Pb年代学研究,为揭示穹窿的成因和成矿作用提供了重要限定。岩石学研究表明,石榴石蓝晶石十字石白云母片岩的共生矿物组合是石榴石+蓝晶石+十字石+白云母+斜长石+石英+钛铁矿+金红石,为典型的中压角闪岩相变质岩。相平衡模拟表明岩石的变质温压条件为670℃和9. 0kbar,并未经历部分熔融。锆石U-Pb定年结果表明,片岩的变质作用发生在47~29Ma,即经历了一个较长期(~20Myr)的变质演化过程。结合现有研究成果,我们认为错那洞片麻岩穹窿具有与喜马拉雅造山带北部发育的其它片麻岩穹窿相同的成因,穹窿核部的中级变质岩为高喜马拉雅结晶岩系的上部构造层位,其变质作用发生在印度大陆向拉萨地体之下低角度俯冲过程中;穹窿核部淡色花岗岩是高分异的异地花岗岩,是高喜马拉雅结晶岩系下部高温高压麻粒岩部分熔融所形成的熔体经历高程度分离结晶产物。此外,本文研究成果为印度与亚洲大陆的碰撞时间和性质提供了进一步约束。  相似文献   

16.
Constraining magnitudes of mechanical and thermo-mechanical parameters of rocks and shear zones are the important goals in structural geology and tectonics (Talbot in J Struct Geol 21:949–957, 1999). Such parameters aid dynamic scaling of analogue tectonic models (Ramberg in Gravity, deformation and the Earth’s crust in theory, experiments and geological applications, 2nd edn. Academic Press, London, 1981), which are useful to unravel tectonics in further details (Schultz-Ela and Walsh in J Struct Geol 24:247–275, 2002). The channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ, = Higher Himalaya) can be explained by a top-to-S/SW simple shear (i.e. the D2 deformation) in combination with a pressure gradient induced flow against gravity. Presuming its Newtonian incompressible rheology with parallel inclined boundaries, the viscosity (μ) of this shear zone along a part of the Himalayan chain through India, Nepal and Bhutan is estimated to vary widely between ~1016 and 1023 Pa s, and its Prandtl number (P r ) within ~1021–1028. The estimates utilized ranges of known thickness (6–58 km) of the HHSZ, that of its top subzone of ductile shear of normal shear sense (STDSU: 0.35–9.4 km), total rate of slip of its two boundaries (0.7–131 mm year?1), pressure gradient (0.02–6 kb km?1), density (2.2–3.1 g cm?3) and thermal diffusivity (0.5 × 10?6–2.1 × 10?6 m s?2) along the orogenic trend. Considering most of the parameters specifically for the Sutlej section (India), the calculated viscosity (μ) and the Prandtl number (P r ) of the HHSZ are deduced to be μ: ~1017–1023 Pa s and P r  ~ 1022–1028. The upper limits of the estimated viscosity ranges are broadly in conformity with a strong Tibetan mid-crust from where a part of the HHSZ rocks extruded. On the other hand, their complete ranges match with those for its constituent main rock types and partly with those for the superstructure and the infrastructure. The estimated mechanical and thermo-mechanical parameters of the HHSZ will help to build dynamically scaled analogue models for the Himalayan deformation of the D2–phase.  相似文献   

17.
Whole rock major and trace element compositions of seven eclogites from the Tso Morari ultra-high pressure(UHP) complex, Ladakh were determined with the aim of constraining the protolith origins of the subducted crust. The eclogites have major element compositions corresponding to sub-alkaline basalts. Trace element characteristics of the samples show enrichment in LILE's over HFSEs(Rb, Th, K except Ba) with LREE enrichments((La/Lu)n = 1.28-5.96). Absence of Eu anomaly on the Primitive Mantle normalized diagram suggests the absence of plagioclase fractionation. Positive correlation between Mg# with Ni and Cr suggests olivine fractionation of mantle melts. Narrow range of(La/Yb)n(2.1-9.4) and Ce/Yb(6.2-16.2) along with Ti/Y(435-735) ratios calculated for the Tso Morari samples is consistent with generation of melts by partial melting of a garnet free mantle source within the spinel peridotite field. Ternary diagrams(viz. Ti-Zr-Y and Nb-Zr-Y) using immobile and incompatible elements show that the samples range from depleted to enriched and span from within plate basalts(WPB)to enriched MORB(E-MORB) indicating that the eclogite protoliths originated from basaltic magmas.Primitive Mantle normalized multi element plots showing significant Th and LREE enrichment marked by negative Nb anomalies are characteristic of continental flood basalts. Positive Pb, negative Nb, high Th/Ta, a narrow range of Nb/La and the observed wide variation for Ti/Y indicate that the Tso Morari samples have undergone some level of crustal contamination. Observed geochemical characteristics of the Tso Morari samples indicate tholeiitic compositions originated from enriched MORB(E-MORB) type magmas which underwent a limited magmatic evolution through the process of fractional crystallization and probably more by crustal contamination. Observed geochemical similarities(viz. Zr, Nb, La/Yb, La/Gd,La/Nb, Th/Ta ratios and REE) between Tso Morari eclogites and the Group I Panjal Traps make the trap basalt the most likely protoliths for the Tso Morari eclogites.  相似文献   

18.
A relict fluvio-lacustrine sediment of an 8 m thick section exposed at Kilang Sarai along Yunam river, near Baralacha La shows presence of cycloids or pseudonodules, ball and pillow structures, flame-like and pocket structures, sand dyke injections, bed dislocation/faulting and flow folds. Within this section four deformed levels of soft sediment structures have been identified which were dated ca. 25 ka BP at level 1 (~0.4 m from the modern river level (mrl), 20.1 ka BP at level 2 (~1.8 m mrl), 17.7 ka BP at level 3 (~2.56 m mrl) and 12.2 ka BP at level 4 (~4.25 m mrl)). Detailed study of these soft sediment structures allow us to demonstrate that deformation level 3 is not related to seismic trigger, but remaining three deformation levels (1, 2 and 4) are ascribed to seismic origin. From compilation of earlier palaeoseismological studies using soft sediment deformational structures (SSDS) in the palaeolake deposits in the adjoining area, suggest that the deformational events identified in the present study are regional in nature and thus tectonic process plays an important role in the evolution of landform in the Spiti region.  相似文献   

19.
Primary igneous monazite from the Polokongka La granite of the Tso Morari complex in the western Himalayas has been partially replaced by a three-layered corona of metamorphic fluor-apatite, allanite + U- and Th-bearing phases (huttonite + brabantite), and epidote. The alteration is related to high-pressure amphibolite-facies (10–11 kbar and 587–695 °C) fluid-induced retrogression of the ultra-high-pressure granite during exhumation after India–Asia collision. The corona textures can be explained by pseudomorphic partial replacement of the original monazite to apatite and allanite via a fluid-mediated coupled dissolution–reprecipitation process. Mass balance calculations using the volume proportions and compositions of coronal minerals show that the REE, U, Th, Pb, Ba and P were conserved and not transported outside the alteration corona. The formation of fluor-apatite, allanite, huttonite and coffinite from monazite and the immobility of REE, U and Th require an influx of alkali- and F-bearing, Ca-rich fluid having high Ca/Na into the corona. We are aware of only two other occurrences of such alteration textures, and these have several similarities in terms of geodynamic setting and P–T histories of the host rocks. We suggest that there may be a common mechanism of exhumation style, and source and composition of fluids during retrogression of granitoid rocks in collisional orogens and that such breakdown textures can be used to identify metagranites that have experienced high-P metamorphism in continental collision zones, which is otherwise difficult to constrain due to the high variance of the mineral assemblages in these rocks.  相似文献   

20.
Amphibole and mica K-Ar, Ar-Ar and Rb-Sr geochronology for the crystalline internal zones of the Indian Plate define both an extensive pre-Himalayan thermal history and a post-Himalayan metamorphism cooling history. South of the Main Mantle Thrust, near Besham, hornblende Ar-Ar ages from basement gneisses record an ca. 1850 Ma mid-Proterozoic thermal event. Hornblende, muscovite and biotite cooling ages from cover sequences metamorphosed during the Himalayan orogeny are 35 ± 4, 30 to 24, and 29 to 22 Ma respectively. The mica ages, together with those derived from zircon and apatite fission track data (Zeitler, 1985) demonstrate a rate of cooling, of about 30°C/Ma, during the late Oligocene to early Miocene that was greater than that either before or since. This rapid cooling was initiated during the post-metamorphic evolution of the Indian Plate south-verging crustal-scale thrust stack, during which cover sequences metamorphosed during the Himalayan orogeny were imbricated with basement rocks thermally unaffected during that event. Most of the cooling, which happened during the stripping of some 10 ± 2 km of overburden, reflects exhumation due to a combination of erosion, recorded in the Miocene molasse sediments of the foreland basin, and major crustal extension within the MMT zone. Both erosion and extension were the direct consequence of the evolution of the thrust stack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号