首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

2.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

3.
ZEH  A. 《Journal of Petrology》2006,47(12):2335-2356
A mathematical approach is presented for the calculation ofthe major and trace element fractionation that is caused bygrowth of zoned garnet in metamorphic rocks. This approach isbased on textural and compositional parameters directly obtainedfrom natural examples. It takes into account the mode and compositionof all unzoned minerals, as well as the mode, crystal size distributionand zonation patterns of garnet grains of different sizes withina certain rock volume. These parameters can be used to fit functionsfrom which the amount of garnet fractionation at each step ofa garnet growth history can be calculated. The approach is testedfor two compositionally distinct domains within a single garnet–biotitegneiss sample from the Ruhla Crystalline Complex. This samplecontains unusual flat-top garnet grains with Y2O3-rich cores.It is shown that MnO, FeO and Y2O3 are extremely fractionatedduring garnet growth, but in different ways, and that MnO fractionationdoes not obey a Rayleigh function. To demonstrate the influenceof garnet fractionation on P–T path estimates, quantitativephase diagrams in the model system Na2O–K2O–CaO–MnO–FeO–MgO–Al2O3–TiO2–SiO2–H2Oare constructed by means of the computer software THERMOCALC.The good agreement between calculated and observed mineral assemblagesand garnet compositions for all fractionation steps indicatesthat the new approach can be used to infer detailed P–Tpaths, even for rocks that contain complexly zoned garnet grains.The results indicate that garnet growth in the metapelite underinvestigation occurred along a linear P–T path from 470°Cand 2·7 kbar to 580°C and 8·5 kbar. The resultsalso show that garnet cores with high Y2O3 contents of about1 wt % nucleated over a temperature interval of c. 90°C,indicating that Y in garnet is relatively insensitive to temperaturechanges. KEY WORDS: garnet; fractionation; pseudosection; yttrium; THERMOCALC  相似文献   

4.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   

5.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   

6.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

7.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

8.
Mineralogical, isotopic, geochemical and geochronological evidencedemonstrates that the Friningen body, a garnet peridotite bodycontaining garnet pyroxenite layers in the Seve Nappe Complex(SNC) of Northern Jämtland, Sweden, represents old, certainlyProterozoic and possibly Archean, lithosphere that became incorporatedinto the Caledonian tectonic edifice during crustal subductioninto the mantle at c. 450 Ma. Both garnet peridotite and pyroxenitecontain two (M1 and M2) generations of garnet-bearing assemblagesseparated by the formation of two-pyroxene, spinel symplectitearound the M1 garnet and the crystallization of low-Cr spinel1Cin the matrix. These textures suggest initial high-pressure(HP) crystallization of garnet peridotite and pyroxenite succeededby decompression into the spinel stability field, followed byrecompression into the garnet peridotite facies. Some pyroxenitelayers appear to be characterized solely by M2 assemblages withstretched garnet as large as several centimeters. Laser ablationmicroprobe–inductively coupled plasma mass spectrometryRe–Os analyses of single sulfide grains generally definemeaningless model ages suggesting more than one episode of Reand/or Os addition and/or loss to the body. Pentlandite grainsfrom a single polished slab of one garnet peridotite, however,define a linear array on an Re–Os isochron diagram that,if interpreted as an errorchron, suggests an Archean melt extractionevent that left behind the depleted dunite and harzburgite bodiesthat characterize the SNC. Refertilization of this mantle bymelts associated with the development of the pyroxenite layersis indicated by enriched clinopyroxene Sr–Nd isotope ratios,and by parallel large ion lithophile-enriched trace elementpatterns in clinopyroxene from pyroxenite and the immediatelyadjacent peridotite. Clinopyroxene and whole-rock model Sm–Ndages (TDM = 1·1–2·2 Ga) indicate that fertilizationtook place in Proterozoic times. Sm–Nd garnet2–clinopyroxene2–wholerock ± orthopyroxene2 mineral isochrons from three pyroxenitelayers define overlapping ages of 452·1 ± 7·5and 448 ± 13 Ma and 451 ± 43 Ma (2  相似文献   

9.
INUI  M.; TORIUMI  M. 《Journal of Petrology》2004,45(7):1369-1392
Chemical zoning of garnet is often used to deduce PTpaths of rocks by inverse calculation. To validate the derivedPT paths, it is desired to establish a method to predictthe chemical compositions of garnet theoretically. This studyproposes a new forward calculation of the formation of Mg–Fe–Mngarnet from chlorite, which solves the non-linear simultaneousequations using nested iterative calculations. Growth of garnetconsuming chlorite and quartz was modelled in a MnO–FeO–MgO–Al2O3–SiO2–H2Osystem, using the most recent thermodynamic data for the minerals.The prograde PT history of the Sambagawa metamorphicbelt, SW Japan, was modelled. To reproduce growth zoning, crystallizedgarnet was removed step by step from the system; perfect diffusionwas assumed for chlorite. The proposed model derived the evolutionof molar amounts and chemical compositions of Mg–Fe–Mnchlorite and garnet. It successfully reproduced the shape ofthe observed chemical profile of garnet, although the temperaturecondition was higher than general observations. The Mn contentof the garnet core was generally high, and Mg/Fe ratio alwaysstarted rising rapidly after Mn was depleted. Thermodynamicproperties of minerals, initial chlorite composition, PTpath, H2O partial pressure, and Ca content in garnet were variedto test the behaviour of the system. The properties of Mn phasesinfluenced only the chemical composition of the garnet core.The temperature range in which garnet grew depended on the H2Opartial pressure or the Ca content in garnet. KEY WORDS: chemical equilibrium; chemical zoning; garnet; forward modelling; Sambagawa metamorphic belt  相似文献   

10.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

11.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

12.
The Liov Granulite Massif differs from neighbouring granulitebodies in the Moldanubian Zone of southern Bohemia (Czech Republic)in including a higher proportion of intermediate–maficand orthopyroxene-bearing rocks, associated with spinel peridotitesbut lacking eclogites. In addition to dominantly felsic garnetgranulites, other major rock types include quartz dioritic two-pyroxenegranulites, tonalitic granulites and charnockites. Minor bodiesof high-pressure layered gabbroic garnet granulites and spinelperidotites represent tectonically incorporated foreign elements.The protoliths of the mafic–intermediate granulites (quartz-dioriticand tonalitic) crystallized 360–370 Ma ago, as indicatedby laser ablation inductively coupled plasma mass spectrometryU–Pb ages of abundant zircons with well-preserved magmaticzoning. Strongly metamorphically recrystallized zircons giveages of 330–340 Ma, similar to those of other Moldanubiangranulites. For the overwhelming majority of the Liov granulitespeak metamorphic conditions probably did not exceed 800–900°Cat 4–5 kbar; the equilibration temperature of the pyroxenegranulites was 670–770°C. This is in sharp contrastto conditions of adjacent contemporaneous Moldanubian granulites,which are characterized by a distinct HP–HT signature.The mafic–intermediate Liov granulites are thought tohave originated during Viséan metamorphic overprintingof metaluminous, medium-K calc-alkaline plutonic rocks thatformed the mid-crustal root of a Late Devonian magmatic arc.The protolith resembled contemporaneous calc-alkaline intrusionsin the European Variscan Belt. KEY WORDS: low-pressure granulites; geothermobarometry; laser-ablation ICP-MS zircon dating; whole-rock geochemistry; Sr–Nd isotopes; Moldanubian Zone  相似文献   

13.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

14.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

15.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

16.
Chemical variations along with changes in microstructure ofthe principal constituent minerals make it possible to identifyat least four equilibrium stages in the evolution of the Yangkougarnet peridotite in the Su-Lu ultrahigh-pressure metamorphicbelt, eastern China: Stage I—a primary garnet lherzolitestage represented by coarse-grained (a few millimeters size)porphyroclastic aluminous pyroxenes + chromian spinel ±garnet; Stage II—an ultrahigh-pressure (UHP) stage definedby fine-grained matrix phases (0·1–0·3 mmsize) of garnet + extremely low-Al orthopyroxene + high-Na clinopyroxene+ chromite; Stage III—a medium-pressure stage definedby fine-grained mineral aggregates (<0·1–0·2mm size) mainly composed of aluminous spinel + high-Al orthopyroxenein the matrix; Stage IV—an amphibolite- to greenschist-faciesstage defined by poikiloblastic amphibole. Orthopyroxene–clinopyroxenethermometry and an empirical spinel barometer give temperaturesof around 800–830°C and pressures of 1·2–2·9GPa for porphyroclasts of Stage I. Garnet–orthopyroxene,garnet–clinopyroxene and empirical spinel geothermobarometersgive relatively uniform PT conditions for the matrixgarnet–orthopyroxene–clinopyroxene–chromiteassemblage of Stage II (  相似文献   

17.
In situ laser ablation inductively coupled plasma mass spectrometryanalysis of trace elements, U–Pb ages and Hf isotopiccompositions of magmatic zircon from I- and S-type granitoidsfrom the Lachlan Fold Belt (Berridale adamellite and Kosciuskotonalite) and New England Fold Belt (Dundee rhyodacite ignimbrite),Eastern Australia, is combined with detailed studies of crystalmorphology to model petrogenetic processes. The presented examplesdemonstrate that changes in zircon morphology, within singlegrains and between populations, generally correlate with changesin trace element and Hf-isotope signatures, reflecting the mixingof magmas and changes in the composition of the magma throughmingling processes and progressive crystallization. The zircondata show that the I-type Kosciusko tonalite was derived froma single source of crustal origin, whereas the S-type Berridaleadamellite had two distinct sources including a significantI-type magma contribution. Complex morphology and Hf isotopevariations in zircon grains indicate a moderate contributionfrom a crustal component in the genesis of the I-type Dundeerhyodacite. The integration of data on morphology, trace elementsand Hf isotope variations in zircon populations provides a toolfor the detailed analysis of the evolution of individual igneousrocks; it offers new insights into the contributions of differentsource rocks and the importance of magma mixing in granite petrogenesis.Such information is rarely obtainable from the analysis of bulkrocks. KEY WORDS: granite source origins; zircon Hf isotopes; zircon petrogenesis; zircon morphology; zircon U–Pb ages  相似文献   

18.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

19.
A highly-fractionated garnet-bearing muscovite granite represents the marginal granitic facies of the Abu-Diab multiphase pluton in the Central Eastern Desert of Egypt. New electron microprobe analyses(EMPA) and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) data from garnets are reported, in order to constrain their origin and genesis. Garnet in the Abu-Diab host granite is euhedral to subhedral, generally homogeneous and, in rare cases, it shows weak zonation. The garne...  相似文献   

20.
Kimberlites from Southern Africa, along with their low-Cr megacrysts,have unusual Hf–Nd isotopic characteristics. Group I andTransitional kimberlites define arrays trending oblique to,and well below, the Nd–Hf isotope ‘mantle array’,defined by oceanic basalts, i.e. they have negative  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号