首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The absorption properties of NO in 5.2 μm band and NO2 in 6.2 μm band are measured for some definite wavelengths by using line-tunable CO laser and long-path absorption cell. The absorption coefficients for 49 CO laser wavelengths are given and variations of absorption withpartial and total pressures are analysed. Fur-thermore, the experimental errors and the interference of water vapour with the absorption at definite laser lines are also discussed.  相似文献   

2.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm^-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm^-1 are taken as a new singlemixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H20 line and continuum in the 2500-14500 cm^-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm^-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm^-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm^-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (-12 W m^-2) among which the H20 continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m^-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

3.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m~2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

4.
南京北郊冬季大气SO2、NO2和O3的变化特征   总被引:1,自引:0,他引:1  
利用差分吸收光谱仪DOAS(differential optical absorption spectroscopy),对2007年11月—2008年1月南京北郊大气SO2、NO2和O3进行了观测。结合Parsivel降水粒子谱仪和自动气象站的资料,对冬季大气污染气体的浓度变化规律及降水和风速风向对其的影响进行了分析。结果表明,南京北郊大气SO2浓度较高,呈明显双峰特征,分别在12时(北京时,下同)和00时达最大,受附近排放源的影响最大,东风及南风时比静风时SO2浓度更高。降水对SO2湿清除效果明显,清除系数平均为0.168 h-1。NO2气体呈明显单峰特征,在18时达最高值。南京北郊是NO2源区之一,主要受附近高速公路汽车尾气排放源的影响。静风时NO2浓度最高。O3浓度受NO2的影响较明显。O3日变化呈单峰特征,在15时达最大值,静风时O3浓度最低。降水对O3的间接影响较明显,在降水时,白天由于太阳辐射较弱,O3浓度降低;夜晚NO浓度较低,使得O3浓度升高。  相似文献   

5.
A calibrated spectroradiometer was used for the measurement of spectra of the absolute actinic flux F during the POPCORN field campaign in Pennewitt (53.8° N, 11.7° E, sea level) in August 1994. The obtained set of actinic flux spectra was used to determine the photolysis frequencies J(O1D), J(NO2), J(HCHO), J(H2O2), J(HONO), and J(CH3CHO), using molecular photodissociation data from literature. The accuracy of the actinic flux measurement was about ±5%. The accuracy of the photolysis frequency determination is limited by the uncertainties of the molecular absorption cross section and quantum yield data. A good agreement within the experimental uncertainties was found in comparison with measurements of J(O1D) and J(NO2) by filterradiometer which were calibrated absolutely against chemical actinometer. A comparison of this work's photolysis frequency measurements at 40° solar zenith angle with respective measured and modeled data from the literature also shows good agreement for most of the processes considered in this work. However, in the case of J(NO2) data reported in the literature as a function of solar zenith angle differences up to a factor of 1.6 with respect to this work's J(NO2) data are observed. Since this is far beyond the estimated experimental uncertainties, other atmospheric variables, such as aerosols, seem to affect J(NO2) to an extent that is underestimated by now and make indirect comparisons of J(NO2) measurements difficult.  相似文献   

6.
热带深对流云对CO、NO、NOx和O3的垂直输送作用   总被引:2,自引:1,他引:1  
银燕  曲平  金莲姬 《大气科学》2010,34(5):925-936
利用2005年11月至2006年2月ACTIVE (Aerosol and Chemical Transport in tropIcal conVEction) 外场试验期间在澳大利亚北部达尔文地区取得的CO、O3、NO和NOx飞机探测资料, 并结合HYSPLIT后向轨迹模式结果, 分析这几种气体成分在对流卷云砧内外的分布情况, 并探讨热带深对流云对于污染气体的垂直输送作用。分析结果显示, 在孤立对流云卷云砧中, 云砧内部O3、NO、NOx浓度均大于云外; 而CO则不同, 只有在近地面浓度高时才如此, 在近地面浓度较小时, 卷云砧内部的浓度反而小于云外。进一步分析造成这两类气体分布差异的原因, 发现CO主要借助深对流云将对流层下层以及对流云周围环境中的CO夹卷并动力垂直输送到对流云顶部卷云砧中, 而对于O3、NO和NOx来说, 除了上述作用以外, 还可能与对流云内部其他物理机制(如闪电), 造成新的O3、NO和NOx有关, 这些新生气体随着风暴内部强烈的上升气流被最终输送进云砧中。  相似文献   

7.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

8.
利用 2008年1-12月南京北郊O3、NO2及SO2质量浓度连续观测资料,分析了南京北郊气体污染物(O3、NO2、SO2) 的质量浓度变化规律。结果表明:南京北郊O3浓度夏季较高,日变化曲线呈单峰型,NO2和SO2浓度夏季较低,日变化曲线呈双峰型,NO2与O3的日变化呈现负相关关系,该地区SO2浓度整体较高,夏季周末效应NO2和SO2较O3更明显。  相似文献   

9.
The photodissociation coefficient, J NO2 of NO2 in the atmosphere was calculated at 235 and 298 K using the measured temperature dependences of the absorption cross-sections and quantum yields. These calculations gave a ratio J NO2(298 K)/J NO2(235 K)=1.155±0.010 which is only weakly dependent on altitude, surface albedo and solar zenith angle.  相似文献   

10.
采用静态暗箱采样—气相色谱/化学发光分析相结合的方法,对晋南地区盐碱地不同小麦秸秆还田量裸地土壤夏、秋季(2008年6~10月)的甲烷(CH4)、二氧化碳(CO2)、氧化亚氮(N2O)和一氧化氮(NO)交换通量进行了原位观测。结果表明:观测期内,秸秆全还田(FS)、秸秆一半还田(HS)和秸秆不还田(NS)处理土壤—大气间CH4、CO2、N2O和NO平均交换通量分别为-0.8±2.7、-1.4±2.3、-6.5±1.8μg(C).m-2.h-1(CH4),267.1±23.1、212.0±17.8、188.5±13.6mg(C).m-2.h-1(CO2),20.7±3.0、16.3±2.3、14.7±1.7μg(N).m-2.h-1(N2O),3.9±0.5、3.4±0.5、3.0±0.4μg(N).m-2.h-1(NO)。交换通量表现出明显的季节变化趋势,灌溉、降雨和温度变化是影响该趋势的主要因素。相对于NS处理,FS和HS处理降低了累积CH4吸收量(66%和59%),增加了累积CO2(42%和12%)、N2O(41%和9%)和NO(30%和13%)排放量,因此,秸秆还田促进了农田土壤总的温室气体排放。计算得到FS和HS处理小麦秸秆的CO2、N2O、NO排放系数分别为73.4%±1.6%和43.3%±1.0%(CO2)、0.37%±0.01%和0.17%±0.00%(N2O)、0.06%±0.00%和0.05%±0.00%(NO),FS处理的排放系数显著高于HS处理,且均低于同一实验地种植玉米、施肥农田的小麦秸秆排放系数(N2O和NO排放系数分别为2.32%和0.42%)。可见,在采用排放因子方法估算还田秸秆CO2、N2O和NO排放量时,应考虑秸秆还田量、农作物种植和施肥因素的影响。  相似文献   

11.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

12.
The chemical reactivity of NO and NO2 is so rapid that their fluxes and concentrations can be considerably modified from that expected for conserved variables in the atmospheric surface layer, even as low as a meter above the surface. Fitzjarrald and Lenschow (1983) have calculated flux and mean concentration profiles for NO, NO2 and O3 in the surface layer using numerical techniques. However, their solutions do not approach the photostationary state at large heights. Here we solve a simpler set of equations analytically (i.e. we assume a constant O3 concentration and neutral hydrodynamic stability), and are able to show how the flux profiles behave at large heights assuming that the concentrations approach their photostationary values. We find, for example, that at large heights the ratio of the flux of NO to that of NO2 is equal to the ratio of their concentrations. These results are relevant to estimating surface fluxes of NO and NO2, and are most applicable to nonurban environments where NO and NO2 concentrations are usually much less than O3 concentration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector/topographic target and backscatter from atmosphere, are available for studying remotely the atmos-pheric NO2 concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved ap-proaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the sur-face layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that arc suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.  相似文献   

14.
我国西部清洁大气中SO2 和NO2的观测和分析   总被引:10,自引:2,他引:10       下载免费PDF全文
在我国青海省瓦里关大气本底基准观象台(海拔3810 m,100°54′E,36°17′N),利用浸渍膜法采集大气中的SO2和NO2,使用离子色谱分析其浓度。1994年8月至1995年7月的测量结果表明,SO2和NO2的平均浓度分别为0.147×10-9和0.055×10-9,SO2和NO2两者具有较好的相关性,其相关系数r=0.87,它们的平均比值为2.6左右。SO2和NO2的浓度受季节和风向的影响,偏东风时浓度较高,偏西风时浓度较低。冬季SO2和NO2的浓度水平较低,而夏季浓度较高。  相似文献   

15.
差分吸收光谱技术(DOAS)已经被广泛用于各种污染气体浓度的测量,其中影响其测量精度的主要因素就是气体吸收截面的测量.利用Lambert Beer 吸收定律以及自主设计的测量装置对大气的主要污染气体NO的吸收截面进行了测量,并采用多项式拟合的方法提高了测量的精度,根据所测得的吸收截面反演了NO气体的浓度值,取得了良好的效果.  相似文献   

16.
During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35km, where measurements overlapped, agreement between NO profiles was within ±30%, which is better than the accuracies claimed by the experimenters. Between 35 and 40km there was similarly good agreement between NO2 profiles, but below 30km, differences of greater than a factor three were found. In the second Campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; but the first Campaign and the column measurements show a more uniform spread of results.These differences below 30km could not be resolved, but new laboratory measurements are planned which should do so.  相似文献   

17.
Both surface environmental monitoring and satellite remote sensing show that North China is one of the regions that are heavily polluted by NO2. Using the NO2 monitoring data from 18 major cities in the region, the tropospheric NO2 column density data from the Ozone Monitoring Instrument (OMI) on the Aura satellite, and the observations from the China Meteorological Administration network, this paper analyzes a regional NO2 pollution event in February 2007 over North China, examines the convergence of the pollutant, and identifies its correlation with the atmospheric background conditions. The results show that daily mean NO2 concentrations derived from surface observations are consistent with the mean values of the OMI measurements, with their correlation coefficient reaching 0.81. The correlations of NO2 concentration with general weather patterns and sequential changes of temperature structure from 925 hPa down to the surface indicate that the weather fronts, high pressure and low pressure systems in the atmosphere play a role in changing the temporal and spatial evolutions of NO2 through removing, accumulating or converging of the pollutant, respectively. It is also found that the eastern Taihang Mountains is most heavily polluted by NO2 in North China. Based on a model that correlates NO2 column density with surface wind vector, the relation of the NO2 concentrations in six major cities in North China to the surrounding wind field is analyzed. The results show that the maximum wind field is associated with the highest frequency of pollution events, and under certain large-scale atmospheric conditions together with the topographic effect, small- and meso-scale wind fields often act to transport and converge pollutants, and become a major factor in forming the heaviest NO2 pollution event in North China. Analysis of the causes for the severe NO2 pollution event in this study may shed light on understanding, forecasting, and mitigating occurrences of heavy NO2 pollution.  相似文献   

18.
A new method for retrieving the vertical profile of NO2 from ground-based measurements is applied to four months of measurements made at Aberdeen (57°N) during part of SESAME from November 1994 to April 1995. The retrieval method is shown to be an invaluable tool both for deriving the true NO2 vertical column and for removing the tropospheric contribution to the vertical column. This dramatically reduces the effects of tropospheric pollution in the observations and enables a more appropriate comparison with stratospheric 3-D model results. The comparison confirms the accuracy of the model's transport and its reactive nitrogen photochemistry, although there are some detailed discrepancies.  相似文献   

19.
Ambient mixing ratios of NO, NO2, and O3 were determined together with the photolysis frequency of NO2, JNO2, at a rural, agricultural site in Germany. The data were collected during the POPCORN-campaign from August 1 to August 24, 1994, in a maize field 6 m above ground. The medians of the NO, NO2, and O3 mixing ratios between 10:00 and 14:00 UT were 0.25, 1.09, and 45 ppbv, respectively. The corresponding median of JNO2 was 6.0 · 10–3 s–1. NOx = NO + NO2 showed a strong diurnal variation with maximum mixing ratios at night, suggestive of a strong local surface source of NO, probably by microbial activity in the soil. The estimated average emission rate was 40 ng(N) m–2 s–1 of NOx, the major part of it probably in the form of NO. The available measurements allowed the estimation of the local NOx budget. At night the budget is almost closed and the measured NOx mixing ratios can be explained by the local source, local dry deposition of NO2, formation of NO3 and N2O5, and vertical exchange of air across the nocturnal inversion. During day-time, the local surface source of NO is not sufficient to explain the measured mixing ratios, and horizontal advection of NOx to the site must be included. The NO2/NO ratio during the morning und late afternoon is lower than predicted from the photostationary state owing to the local NO surface source, but is regulary higher during the hours around noon. For noon, August 10, 1994, the NO2/NO ratio was used to derive the momentary lower limit for the concentration of the peroxy-radicals of 2.2 · 109 cm–3 (86 pptv).  相似文献   

20.
北京奥运会期间NO2浓度降低原因分析   总被引:1,自引:0,他引:1  
2002~2008年,北京市城区和近郊8月的NO2月均浓度大体呈现逐年下降趋势,其中前5年二者均以每年约10%的降幅下降,2008年发生显著下降,降幅达40%左右。利用嵌套网格空气质量模式系统(NAQPM/IAP),采用敏感性试验方法,评估了气象条件与污染控制措施对北京奥运会期间大气NO2浓度降低的影响,评估不同污染控制措施对NO2浓度降低的作用。研究结果表明,污染控制措施是NO2浓度降低的主要影响因素,其中面源的污染控制措施对于NO2浓度降低的作用最明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号