首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
松辽盆地白垩系砂岩长石碎屑的钠长石化作用   总被引:12,自引:0,他引:12  
松辽盆地白垩系砂岩以长石岩屑砂岩和岩屑长石砂岩为特征。砂岩中发育长石碎屑、岩屑等不稳定组分,而且随着埋藏深度加深(成岩作用加强)钾长石逐渐减少并最终在2700m以下消失。斜长石碎屑中钠长石组分逐渐增多,钙长石组分逐渐减少,最终形成纯钠端元的钠长石。在成岩过程中长石碎屑的钠长石化主要有3种方式:①由离子交代作用导致长石碎屑的钠长石化;②长石碎屑边缘钠长石次生生长;③与长石碎屑溶解伴生的新生钠长石作用。结合热动力学平衡原理分析,斜长石的钠长石化基本不受成岩温度和压力的制约,而钾长石的钠长石化需要较高的成岩温度和压力作用才能进行。因此,斜长石的钠长石化可见于成岩早期,而钾长石的钠长石化只发生于成岩晚期。  相似文献   

2.
Summary A number of small Palaeoproterozoic granitoid plutons were emplaced in the Khetri Copper Belt, which is an important Proterozoic metallogenic terrane in the northeastern part of Aravalli mountain range. Contiguous Biharipur and Dabla plutons are located about 15 km southeast of Khetri, close to a 170 km long intracontinental rift zone. The plutons are composed of amphibole-bearing alkali-feldspar granites, comprising microcline-albite granite, albite granite and late-stage microgranite. The albite granite in Biharipur is confined to the margins of the pluton, and shows extensive commingling with the synchronous mafic plutonics. Geochemically, the albite granites are characterised by low K2O (∼0.5 wt.%) and elevated Na2O (∼7.0 wt.%) abundances. By contrast, the microcline-albite granite does not show any significant mafic-granite interactions and shows normal concentrations of alkali elements. The granitoids display high concentrations of the rare earth (except Eu) and high field strength elements, high values of Ga/Al (>2.5), agpaitic index and Fe*-number. These features together with their alkaline metaluminous and ferroan nature classify the rocks as typical A-type within-plate granites. All the granitoid facies display similar REE and incompatible element profiles indicating their cogenetic nature. These granitoids were emplaced in a shallow crustal chamber under relatively low pressures, high temperature (≥850 °C) and relatively oxidising conditions. The oxidised nature, HFSE concentrations and Nd isotope data (ɛNd = −1.3 to −2.9) favour derivation of these granitoid rocks from crustal protoliths. The generation of albite granite is attributed to the replacement of alkali feldspar and plagioclase of the original granite by pure albite as a consequence of pervasive infiltration of a high Na/(Na + K) fluid at the late-magmatic stage. This model may have wider significance for the generation of albite granites/low-K granites or albitites in other areas. The A-type plutonism under consideration seems to be an outcome of ensialic rifting of the Bhilwara aulacogen.  相似文献   

3.
The textural relationships and geochemistry of feldspars from least-altered to sericite-hematite altered and mineralised ~ 1.595 Ga Roxby Downs Granite (RDG) at Olympic Dam, South Australia, were examined. The sample suite is representative of RDG both distal (> 5 km) and proximal (< 1 km) to the hydrothermal breccias of the Olympic Dam Breccia Complex (ODBC), which host Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam. Microscopic observations and quantitative analyses indicate that a range of feldspar reactions have taken place within the RDG hosting the Olympic Dam deposit. An early phase of igneous plagioclase (~ An27–34) is recognised, along with a more abundant, less-calcic plagioclase (~ An12–20) both displaying rapakivi and anti-rapakivi textures with alkali feldspar. Alkali feldspars (~ Or55Ab43An2) record post-magmatic evolution from cryptoperthite to patch perthite. Subsequent patch perthite is overprinted by highly porous, near end-member albite and K-feldspar, while plagioclase undergoes replacement by albite + sericite ± Ba-rich K-feldspar. In sericite-hematite altered and mineralised RDG along the margin of the ODBC, sericite replaces all plagioclase, whereas red-stained, Fe-rich K-feldspar persists. Sulphide-uranium-rare earth element mineralisation is observed in association with hydrothermal feldspars, and increases in abundance with proximity to the orebody. Petrographic observations and whole-rock geochemistry illustrate the transformation of plagioclase and alkali feldspar from igneous to hydrothermal processes, and indicate that hydrothermal albite and K-feldspar formed within the RDG without the need for an external source of alkalis. Feldspar geothermometry indicates a minimum crystallisation temperature of 765 °C at 2.2 kbar for alkali feldspar (pressure estimate obtained using plagioclase-amphibole geobarometry) followed by a range of lower temperature transformations. Late-stage magma mixing/contamination is postulated from supportive temperature and pressure estimates along with feldspar and mafic mineral relationships.  相似文献   

4.
Samples of essentially “dry” high-pressure felsic granulites from the Bohemian Massif (Variscan belt of Central Europe) contain up to 2-mm-large perthitic alkali feldspars with several generations of plagioclase precipitates in an orthoclase-rich host. The first generation takes the form of lenses homogeneous in size, whereas the size of a second generation of very thin albite-rich precipitates is more variable with comparatively high aspect ratios. In the vicinity of large kyanite, garnet or quartz inclusions, the first generation of plagioclase precipitates is significantly less abundant, the microstructure is coarser than in the remainder of the perthitic grain and the host is a tweed orthoclase. The first generation of precipitates formed at around 850 °C during the high-pressure stage (16–18 kbar) of metamorphism. Primary exsolution was followed by primary coarsening of the plagioclase precipitates, which still took place at high temperatures (850–700 °C). The coarsening was pronounced due to the access of fluids in the outer portions of the perthitic alkali feldspar and in more internal regions around large inclusions. The second generation of albite-rich precipitates was formed at around 570 °C. TEM investigations revealed that the interfaces between the second-generation plagioclase lamellae and the orthoclase-rich host are coherent or semi-coherent. During late evolutionary stages of the perthite, albite linings were formed at phase boundaries, and the perthitic microstructure was partially replaced by irregularly shaped precipitates of pure albite with incoherent interfaces. The albitization occurred below 400 °C and was linked to fluid infiltration in the course of deuteric alteration. Based on size-distribution analysis, it is inferred that the precipitates of the first generation were most probably formed by spinodal decomposition, whereas the precipitates of the second generation rather were formed by nucleation and growth.  相似文献   

5.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

6.
 Thermodynamic analysis of Fe- and Mg-bearing plagioclase and silicate liquid was carried out based on reported element partitioning data between plagioclase and silicate liquid in reduced conditions, solution properties of ternary feldspar, standard state properties of plagioclase endmembers and solution properties of multicomponent silicate liquid. Derived mixing properties of Fe- and Mg-bearing plagioclase are in harmony with estimated results from synthetic experiments in the systems CaAl2Si2O8-CaFeSi3O8 and CaAl2Si2O8-CaMgSi3O8. Based on the determined solution properties of the plagioclase, a computer program to calculate the element partition relationships between Fe- and Mg-bearing plagioclase and multicomponent silicate liquid was developed. The FeO, MgO and MgO/(MgO + FeO) in plagioclase predicted from known liquid compositions and pressure are in agreement with measurements within 0.2 wt%, 0.1 wt% and 0.1 (mol ratio), respectively. The Fe3+ content in plagioclase crystallized at high oxygen fugacity can be estimated with this program. The Fe3+/total Fe ratio in plagioclase crystallized near the quartz-fayalite-magnetite buffer ranges from 0 to 0.5, which is consistent with previous study on natural plagioclase in submarine basalt. Derived solution properties of the Fe- and Mg-bearing plagioclase are also used to calculate equilibrium composition relationship between olivine and plagioclase. Change of X Fo in olivine coexisting with plagioclase affects MgO and FeO contents in plagioclase greatly. The present model predicts X Fo of coexisting olivine from the chemical composition of plagioclase to ±0.1 accuracy at given pressure and temperature. Received: 27 March 1998 / Accepted: 30 September 1999  相似文献   

7.
The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm−1 in K-feldspar formed in normal 16O aqueous solution to ~457 cm−1 in the K-feldspar formed in 18O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.  相似文献   

8.
Perthitic alkali feldspar primocrysts in layered syenites in the Klokken intrusion in South Greenland, underwent dissolution–reprecipitation reactions in a circulating post-magmatic aqueous fluid at ~450°C, and are to a large degree pseudomorphs. These ‘mutual replacement’ reactions provide a perfect natural experiment with which to study trace element partitioning between sodium and potassium feldspars growing simultaneously. The reactant ‘phase’ was a cryptoperthitic feldspar consisting of low albite and low microcline in a coherent sub-μm ‘braid’ intergrowth and the product phases were ‘strain-free’ incoherent subgrains of low albite and low microcline forming microporous patch perthites on scales up to 200 μm. The driving force for the reaction was reduction of coherency strain energy. The mechanisms of this process are described in Part I. Five mixed braid perthite–patch perthite crystals were analysed for major and trace elements using laser ablation-inductively coupled plasma mass spectrometry with a 19 μm beam diameter. This gave bulk analyses of the braid texture, which were in the range Ab73–54Or45–27An4.3–0.8, but could resolve Ab- and Or-rich patches in patch perthite. The major element bulk compositions of the crystals were retained during the replacement reactions. Major components in patches plot on tielines in the Ab–Or–An ternary system that pass through or very close to the parent braid perthite composition and indicate local equilibrium on the scale of a few tens of mm. Many trace elements, including REE, were lost to the fluid during the deuteric reactions, but the effect is large only for Fe and Ti. Cs, Pb and Sr were added to some crystals. Plots of log distribution coefficient D for Rb, Ba, Pb, Eu2+, La and Ce between Or- and Ab-rich patches against ionic radius are straight lines, assuming eightfold coordination, and to a first approximation are independent of ionic charge. K also lies on these lines, and the smaller ions Na and Ca lie close to them. The best linear fits were obtained using ionic radii for [8]K and [8]Ca, but there is ambiguity as to whether [7]Na or [5]Na is most appropriate. The linear relationship shows that the listed trace elements are in the feldspar M-site rather than in inclusions. Tl is in M although an exact D could not be obtained. The very large Cs ion partitions strongly into the Or-rich phase but its D value appears to be less than predicted by extrapolation. The near-linearity arises because partitioning is occurring between two solids into sites which have similar Young’s moduli, so that the parabolas that normally represent trace element partitioning between crystals and liquids (which have negligible shear strength) approximately cancel out. Ga and Be are in T-sites, as well as some of the Fe and Ti present, although part is in oxide inclusions. The site of Sc is unclear, but if structural it is likely to be T. Partitioning on M-sites is a potential geothermometer but because the effective size of the irregular M-site is defined by its K and (Na + Ca) contents, which are controlled by ternary solvus relationships, its calibration is not independent of conventional two-feldspar geothermometers. Trace elements may however provide a useful means of confirming that feldspar pairs are in equilibrium, and of recognising feldspar intergrowths produced by non-isochemical replacement rather than exsolution. Two-feldspar geothermometry for the ternary phases in the low-albite microcline patch perthites gives temperatures above the stability range of microcline, markedly so if a correction is made for Si–Al ordering. This is probably because current geothermometers are too sensitive to low concentrations of An in ordered Or-rich feldspars. This interpretation is supported by two-feldspar assemblages growing at known temperatures in geothermal systems and sedimentary basins. This paper and the earlier Part I are dedicated in the memory of J. V. Smith and W. L. Brown, both of whom died in 2007, in acknowledgement of their unrivalled contributions to the study of the feldspar minerals over more than half a century. An erratum to this article can be found at  相似文献   

9.
Late Alpine fissures and fractures in amphibolite-facies basement gneisses at Arvigo (Val Calanca, Swiss Alps) show distinct cm-sized reaction selvages parallel to the fracture walls that composed of subgreenschist facies assemblages produced by the interaction of water present in the fracture porosity with the old high-grade gneiss assemblages. The process of selvage or reaction-vein formation occurred in the brittle deformation regime and at temperatures characteristic of, first the prehnite-pumpellyite facies and then later of the zeolite facies. The vein formation occurred during uplift and cooling at very late stages of the Alpine orogeny. The reaction veins are composed of a selvage of altered gneiss on both sides of the central fracture and a central zone with fissure minerals that have been growing in the open fracture pore space. The central zone of the Arvigo veins contains an early assemblage with epidote, prehnite and chlorite and a late succession sequence of various species of zeolite. The veins of the Arvigo quarry are convincing evidence that fracture fluids in gneiss and granite have the potential to precipitate Ca–zeolite. This is an important find because many fluids recovered from deep continental drill holes and from geothermal energy exploration are found to be oversaturated in respect to a number of Ca–zeolite species. Vein formation during late uplift and cooling of the Alps occurred at continuously decreasing T and at hydrostatic pressure: (1) coexisting prehnite/epidote records temperatures of 330–380°C, (2) chlorite formation at temperature of 333 ± 32°C and (3) formation of zeolites <250°C. In the selvages the prime reaction is the replacement of plagioclase by albite along a sharp reaction front that separates the selvage from unaltered gneiss. In addition to albitisation, chloritisation of biotite is the second important reaction in the alteration process. The reactions release components for the formation of Ca–Al silicates. The water–rock interaction is associated with a depletion of Al, Si, Ca, Fe and K in the altered wall rock. The overall reaction is associated with an increase in porosity of up to 14.2 ± 2.2% in the selvage zone (altered wall rock), caused by the volume decrease during albitisation and the removal of biotite. The propagation of the sharp reaction front through the gneiss matrix occurred via a dissolution-reprecipitation mechanism. Zeolite formation is tied to the plagioclase alteration reaction in the rock matrix, which releases components for zeolite formation to a CO2-poor aqueous liquid.  相似文献   

10.
The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced.  相似文献   

11.
Robert J. Stull 《Lithos》1978,11(3):243-249
Mantled feldspars that formed by resorption, development of skeletal plagioclase crystals, and filling with alkali feldspar are common in the Golden Horn batholith, Washington. Subhedral plagioclase mantles have weak normal zoning from An17 to An10. Plagioclase zoning and twinning are crosscut by resorption channels. Resorption cavities and channels are coated with albite (An10). Anhedral, perthitic orthoclase within the plagioclase is optically continuous with orthoclase in channels and on the mantle exterior.This texture resulted from resorption of calcic cores of plagioclase as pressure decreased when water-undersaturated granite magma intruded to a shallow crustal level. At shallow level, only alkali feldspar and quartz crystallized and were available to fill the skeletal plagioclase.  相似文献   

12.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

13.
The more rapid dissolution of Ca-rich feldspars relative to Na, K-rich feldspars has been attributed to the preferential leaching of Al deep within the feldspar structure. Evidence from surface microanalysis (e.g., Hellmann et al., 2003), however, shows that preferential dissolution of Al is confined to the top layers of the feldspar lattice and that the amorphous surface layer most likely results from precipitation versus dissolution. It is thus critical to examine the extent of preferential Al removal. Here we present a theoretical study of plagioclase dissolution behavior using parameterized Monte Carlo simulations. Two different dissolution mechanisms, a mechanism involving preferential leaching of Al and an interfacial dissolution-reprecipitation mechanism, are tested using compositions representing the entire plagioclase solid solution series. Our modeling results indicate that under the control of the preferential Al leaching mechanism, the influence of (Al, Si) disorder on the dissolution rate is significant. At a fixed composition, an increase in the degree of (Al, Si) disorder yields an increased dissolution rate, with an 8-fold increase in dissolution rate observed for highly disordered albite (An0) compared to low albite. Increasing anorthite content tends to decrease the variation in the dissolution rate due to disorder. The difference in the dissolution rate of 293 tested oligoclase configurations with a composition of An20 is 3-fold, and the difference is reduced to 2-fold among 107 andesine configurations of An30. Furthermore, feldspar configurations with completely disordered (Al, Si) distributions yield a consistent log-linear dependence of dissolution rate on the anorthite content (An), while other feldspar configurations with modest degrees of (Al, Si) disorder exhibit rates less than this trend. In contrast, when Al removal is confined to the top surface layers, a variety of feldspar configurations with different (Al, Si) disorder but a single fixed composition have similar dissolution rates; and the dissolution rate of Ca-rich feldspars departs positively from its log-linear relationship with anorthite content. This departure occurs around An80 and is in good agreement with previous experimental studies. Subsequent modeling results of aluminum inhibition, ΔG dependence, and formation of altered surface layers in the framework of the interfacial dissolution-reprecipitation mechanism are all comparable with experimental investigations, and these results suggest that an interfacial dissolution-reprecipitation mechanism governs the dissolution of plagioclase feldspars.  相似文献   

14.
Fluid transport on the grain-scale controls many rock properties and governs chemical exchange. Charnockites from Lofoten indicate fluid penetration into ternary alkali feldspars controlled by their microtextures. In a process of fluid infiltration at granulite-facies conditions (∼600°C and 8–11 kbar), tiny pyroxenes enclosed in alkali feldspar reacted to amphiboles, which are always spatially connected to perthitic albite. Investigation of these microtextures by TEM imaging of Focused Ion Beam (FIB) prepared foils revealed that pyroxenes in contact with albite lamellae show dissolution features. An amorphous Fe- and Cl-bearing material interpreted to be a residuum of the percolating fluid was found within albite lamellae. Textures and mineral compositions indicate that a Cl-rich aqueous fluid attacked the lamellae, which then provided pathways for further fluid flow. A correspondence was found between feldspar compositions, their microtexture and their degree of alteration as a result of their permeability for fluids at specific temperatures. Hence, in addition to pressure and temperature, small variations of feldspar composition can strongly influence the fluid permeability of feldspathic rocks under lower crustal conditions.  相似文献   

15.
The equilibrium temperatures for coexisting plagioclase and potassium feldspar pairs have been calculated for various textural varieties of feldspar from 3 post-metamorphic granites from the Georgia Piedmont; the Danburg, Siloam, and Stone Mountain plutons. Assuming an intermediate structural state for the feldspars at time of equilibration, crystallization temperatures match those expected from experimental data for quartz monzonite magmas (650 to 780° C). The variations in solidus temperature, recorded in the feldspars, may be used to estimate relative differences in depth of intrusion. Sharp reversals in plagioclase compositional trends may be caused by isothermal decreases in confining pressure associated with upward migration through the crust. In fine grained and slowly cooled intrusions, albite tends to be lost from the alkali feldspar grains, and recrystallizes as separate unzoned grains of oligoclase, thus erasing the previous thermal history. Perthite exsolution and re-equilibration within the alkali feldspar grains appears to continue down to temperatures of 400° C or so, although the zoned plagioclase does not homogenize. The recrystallization associated with changes in structural state may facilitate exsolution within alkali feldspar grains.  相似文献   

16.
Cathodoluminescence (CL) reveals red and blue colors within single, non-turbid albite (Ab98–99) grains from the Georgeville granite, Nova Scotia. A 720 nm X-ray excited optical luminescence (XEOL) peak characterizes red CL regions, while a 280 nm XEOL feature dominates blue CL regions. Synchrotron X-ray fluorescence results indicate that red CL and the 720 nm XEOL peak intensities relate to total Fe concentrations. The relationship between red CL and Fe content is confirmed by electron microprobe (EMPA) and laser ablation-inductively coupled mass spectrometry (LA-ICP-MS). The XEOL technique is used to exclude the Fe K-edge as the cause of red CL. X-ray absorption spectroscopy results indicate that Fe in both the red and blue CL regions is Fe3+, and that red CL activation may relate to the Si–Al order of the feldspar and to the distribution of Fe on tetrahedral sites. The CL textures, combined with EMPA and LA-ICPMS analyses, indicate that blue CL albite (Ab98) regions contain higher concentrations of Ca, Ti, Pb and rare earth elements, and were replaced, in part, by a more Fe-rich, trace element depleted albite (Ab99) which displays red CL. Complex diffraction contrasts and amorphous deposits identified in transmission electron microscope images suggest that aqueous fluids have reacted with both red and blue CL regions. Fluid inclusion homogenization temperatures of up to 430 °C provide a lower estimate of the fluid temperature.  相似文献   

17.
 The southern Voltaian Sedimentary Basin underlies an area of about 5000 km2 in east-central Ghana. Groundwater in the basin occurs in fractures in highly consolidated siliciclastic aquifers overlain by a thin unsaturated zone. Aquifer parameters were evaluated from available aquifer-test data on 28 shallow wells in the basin. Hydraulic-conductivity values range from 0.04–3.6 m/d and are about two orders of magnitude greater than the hydraulic conductivity calculated using Darcy's Law and the average groundwater velocity estimated from carbon-14 dating. Linear-regression analysis of the transmissivity and specific-capacity data allowed the establishment of an empirical relationship between log transmissivity and log specific capacity for the underlying aquifers. Groundwater chemistry in the basin is controlled by the weathering of albitic plagioclase feldspar. The weathering rates of various minerals were estimated using 14C-derived average velocity in the basin. The weathering rate of albite was calculated to be 2.16 μmol L–1 yr–1 with the resulting formation of 3.3 μmol L–1 yr–1 of kaolinite and 0.047 μmol L–1 yr–1 of calcite. The low porosity and permeability of the aquifers in the basin are attributed to the precipitation of secondary minerals on fracture surfaces and interlayer pore spaces. Received, September 1997 Revised, July 1998, August 1998 Accepted, August 1998  相似文献   

18.
Intracrystal microtextures formed by a process of mutual replacement in alkali feldspars record fluid–rock reactions that have affected large volumes of the Earth’s crust. Regular, ≤1 μm-scale ‘strain-controlled’ perthitic microtextures coarsen, by up to 103, by a dissolution–reprecipitation process, producing microporous patch or vein perthites on scales >100 μm. We have developed earlier studies of such reactions in alkali feldspar cm-scale primocrysts in layered syenites from the Klokken intrusion, South Greenland. We present new hyperspectral CL, SEM images, and laser ICPMS analytical data, and discuss the mechanism of such replacement reactions. The feldspars grew as homogeneous sodic sanidines which unmixed and ordered by volume diffusion during cooling into the microcline field at ~450°C, giving regular, fully coherent ‘braid’ cryptoperthite. At ≤450°C the crystals reacted with a circulating post-magmatic aqueous fluid. The braid perthite behaved as a single reactant ‘phase’ which was replaced by two product phases, incoherent subgrains of low albite and microcline, with micropores at their boundaries. The driving force for the reactions was coherency strain energy, which was greater than the surface energy in the subgrain mosaic. The external euhedral crystal shapes and bulk major element composition of the primocrysts were unchanged but they became largely pseudomorphs composed of subgrains usually with the ‘pericline’ and ‘adularia’ habits (dominant {110} and subordinate {010} morphology) characteristic of low T growth. The subgrains have an epitactic relationship with parent braid perthite. Individual subgrains show oscillatory zoning in CL intensity, mainly at blue wavelengths, which correlates with tetrahedral Ti. Regular zoning is sometimes truncated by irregular, discordant surfaces suggesting dissolution, followed by resumption of growth giving regular zoning. Zones can be traced through touching subgrains, of both albite and microcline, for distances up to ~500 μm. At ≤340°C, the microcline subgrains underwent a third stage of unmixing to give straight lamellar film perthites with periodicities of ~1 μm, which with further cooling became semicoherent by the development of spaced misfit dislocations. Sub-grain growth occurred in fluid films that advanced through the elastically strained braid perthite crystals, which dissolved irreversibly. Braid perthite was more soluble than the strain-free subgrain mosaics which precipitated from the supersaturated solution. Some volumes of braid texture have sharp surfaces that suggest rapid dissolution along planes with low surface energies. Others have complex, diffuse boundaries that indicate a phase of coherent lamellar straightening by volume diffusion in response to strain relief close to a slowly advancing interface. Nucleation of strain-free subgrains was the overall rate-limiting step. To minimise surface energy subgrains grew with low energy morphologies and coarsened by grain growth, in fluid films whose trace element load (reflected in the oscillatory zoning) was dictated by the competitive advance of subgrains over a range of a few tens of mm. The cross-cutting dissolution surfaces suggest influxes of fresh fluid. Removal of feldspar to give 2 vol% porosity would require a feldspar:fluid ratio of ~1:26 (by wt). The late reversion to strain-controlled exsolution in microcline subgrains is consistent with loss of fluid above 340°C following depressurization of the intrusion. A second paper (Part II) describes trace element partitioning between the albite and microcline subgrains, and discusses the potential of trace elements as a low-T geothermometer. This paper and the Part II are dedicated in memory of J.V. Smith and W.L. Brown, both of whom died in 2007, in acknowledgement of their unrivalled contributions to the study of the feldspar minerals over more than half a century.  相似文献   

19.
The feldspar minerals occur in a wide variety of lithologies throughout the Solar System, often containing a variety of chemical and structural features indicative of the crystallization conditions, cooling history and deformational state of the crystal. Such phenomena are often poorly resolved in micrometre-scale analyses. Here, atom probe tomography (APT) is conducted on Ca-rich (bytownite) and Na-rich (albite) plagioclase reference materials, experimentally exsolved K-feldspar (sanidine), shock-induced plagioclase glass (labradorite-composition), and shocked and recrystallized plagioclase to directly test the application of APT to feldspar and yield new insights into crystallographic features such as amorphisation and exsolution. Undeformed plagioclase reference materials (Amelia albite and Stillwater bytownite) appear chemically homogenous, and yield compositions largely within uncertainty of published data. Within microstructurally complex materials, APT can resolve chemical variations across a ~?20 nm wide exsolution lamella and define major element (Na, K) diffusion profiles across the lamella boundaries, which appear gradational over a ~?10 nm length scale in experimentally exsolved K-feldspar NNPP-04b. The plagioclase glass within the Zagami shergottite shows no heterogeneity in the distribution of major elements, although the enrichment of Fe, Mg and Sr in the bulk microtip points to at least minor incorporation of surrounding phases (pyroxene), and with that supports a shock-melt origin for the glass (maskelynite). The recrystallization of feldspar during post-shock annealing, such as in poikilitic shergottite NWA 6342, appears to induce a range of chemical nanostructures that locally effect the composition of the material. These findings demonstrate the ability of APT to yield new insights into nanoscale composition and chemical structures of alumniosilicate phases, highlighting an exciting new avenue with which to analyse these key rock-forming minerals.  相似文献   

20.
The equilibrium precipitate formed by exsolution in alkali feldspar containing calcium in solid solution is a two-phase intergrowth of plagioclase and quartz. It is the kinetics of the precipitation, however, which decides whether or not this reaction will take place. It is shown that lamellar growth of plagioclase and quartz is only accomplished by the advancement of an incoherent boundary originating at an alkali feldspar — alkali feldspar boundary or at an interface between alkali feldspar and plagioclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号