首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-position radio sounding of the solar wind by the Galileo and Cassini spacecraft has been first performed. These spacecraft followed the Sun from east to west from May 12 to 24, 2000 and sounded the regions spaced in radial directions by several millions of kilometers. Stable correlation has been revealed between fluctuation effects detected in spatially spaced radio-sounding paths of disturbed plasma structures of the coronal mass ejection (CME) type. The radio effects have been found to correlate also with the data on the solar wind density near the Earth orbit. It has been shown that the two-position radio-sounding method together with the data on solar radiation in the X-ray and optic ranges and with the results of local plasma measurements provides information on the structure and velocity of the propagation of CMEs from the photosphere to the Earth orbit. In the most powerful event recorded on May 13, 2000, the CME velocity at the heliocentric distances of about 15R (R is the solar radius) reached 1200 km/s. At (15–25) R , the velocity was about 1300 km/s. At distances larger than 25R , disturbance was decelerated from 1300 to 450 km/s near the Earth orbit.  相似文献   

2.
Based on the magnetopause observations near the Earth by the Prognoz/Interball satellites in 1972–2000, the empirical model of this boundary has been proposed, and the magnetopause behavior at different parameters of the oncoming solar wind has been studied. For the first time, it has been detected that the Earth’s magnetopause is compressed by ∼5% in the direction perpendicular to the plane including the vectors of the solar wind velocity and IMF. At the same time, any dependence of the subsolar magnetopause position on the IMF B z component has not been revealed in the Progrnoz/Interball data. The proposed magnetopause model can be used to model the position and shape of the near-Earth bow shock.  相似文献   

3.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

4.
The effect of anomalously high average nighttime intensities of the atomic oxygen 557.7-nm atmospheric emission (luminescence heights 85–115 km) during sudden winter stratospheric warming events (SWEs) in Eastern Siberia is considered. Analysis of the variations in the 557.7-nm emission intensity (I 557.7) revealed the interdaily I 557.7-nm variations during SWEs and high average monthly I 557.7-nm values in the winter months in conditions of high solar activity. It has finally been found that the variations with periods of several days, at a maximum of which anomalously high daily values of I 557.7 are observed, are superposed on the average I 557.7-level during SWEs at high solar activity. A high average level of I 557.7 in the winter months in Eastern Siberia can be related to the fact that the atomic oxygen concentration at altitudes of the 557.7 nm emission luminescence increases by a factor of 2–3 in years of high solar activity.  相似文献   

5.
A detailed representation of variations of the total solar flux I has been obtained by analyzing the regular measurements of this flux by the Nimbus-7 and other spacecrafts. In particular, quasi-biennial variations (QBVs) of the monthly average value 〈I〉 and standard deviation sI within a month interval have been revealed. It is remarkable that the QBVs of sI almost coincide in shape with the QBVs of many solar activity and ionospheric indices, and the QBVs of 〈I〉 are almost in antiphase with the variations of sI. The manifestation of the QBVs of 〈I〉 in some processes on the Earth has been already revealed. A relation between the QBVs of 〈I〉 for solar radiation (according to the Nimbus-7 and ACRIM-2 data) and the QBVs of the zonal stratospheric wind near the equator, as well as the QBVs of the Earth’s rotation velocity, has been found. Many of the considered QBV-processes on the Earth are seemingly attributed to the variations of the total solar flux.  相似文献   

6.
On the basis of measurements of the intensity of 1.58-μm emissions of the Infrared Atmospheric System of molecular oxygen (IRAO2) conducted at the Zvenigorod scientific station of the Institute of Atmospheric Physics of the Russian Academy of Sciences (φ = 55.7°N, λ = 36.8°E), seasonal variations are estimated for various solar zenith angles. Their amplitude has the maximum value at the solar zenith angles χ S ∼ 105–110°. It decreases at χ S ∼ 125–130° and tends to zero at χ S ∼ 80–85°. The comparison of currently measured values of the 1.58-μm emission intensity of the Infrared Atmospheric System of molecular oxygen with published data on the intensity of this emission obtained in 1961–1966 reveals their decrease over approximately 50 years. This fact is in good agreement with similar behavior of the emission intensity of atomic oxygen (557.7 nm) over the period considered.  相似文献   

7.
A complex of geophysical phenomena (geomagnetic pulsations in different frequency ranges, VLF emissions, riometer absorption, and auroras) during the initial phase of a small recurrent magnetic storm that occurred on February 27–March 2, 2008, at a solar activity minimum has been analyzed. The difference between this storm and other typical magnetic storms consisted in that its initial phase developed under a prolonged period of negative IMF B z values, and the most intense wave-like disturbances during the storm initial phase were observed in the dusk and nighttime magnetospheric sectors rather than in the daytime sector as is observed in the majority of cases. The passage of a dense transient (with N p reaching 30 cm−3) in the solar wind under the southward IMF in the sheath region of the high-speed solar wind stream responsible for the discussed storm caused a great (the AE index is ∼1250 nT) magnetospheric substorm. The appearance of VLF chorus, accompanied by riometer absorption bursts and Pc5 pulsations, in a very long longitudinal interval of auroral latitudes (L ∼ 5) from premidnight to dawn MLT hours has been detected. It has been concluded that a sharp increase in the solar wind dynamic pressure under prolonged negative values of IMF B z resulted in the global (in longitude) development of electron cyclotron instability in the Earth’s magnetosphere.  相似文献   

8.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

9.
The functional relation between theδ18O values in the shell of gastropod Gyraulus sibirica and the air temperature in the warm half-yearly period, and that between Sr/Ca ratio and the precipitation in the warm half-yearly period were established by calibrating the δ18O and δ13C values, Sr/Ca ratio and Mg/Ca ratio in the shell Gyraulus sibirica, as well as the total organic carbon (TOC) and its δ13C values in the Xingcuo Lake sediment in the eastern Tibetan Plateau. The sequences of air temperature and precipitation in the last 200 years in the region were quantitatively recuperated on this basis. The results showed the following: (i) There was a negative correlativity between Sr/Ca ratio and the precipitation in the warm half-yearly period, its correlation coefficient was 0.86. (ii) There was an obviously positive correlativity between indexδ18O and the running average temperature in the warm half-yearly period, its correlation coefficient was 0.89. (iii) Evolution of the air temperature and the precipitation in the last 200 years can be divided into three phases distinctly. The precipitation in the later mid-19th century was 220 mm higher than that today; the air temperature in the warm half-yearly period was 2℃ lower than that of the present. The precipitation in the minimum air temperature period of the early 20th century was below that today by 60 mm, and the air temperature in the warm half-yearly period was 3.4℃ lower than that today. (iv) An evidently warming and drying trend existed in the last five decades.  相似文献   

10.
The correlations of isotopic ratios in precipitation with temperature, air pressure and humidity at dif- ferent altitudes, in southwest China, are analyzed. There appear marked negative correlations for the δ 18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW) at Mengzi, Simao and Tengchong stations on synoptic timescale; the marked negative correlations between the δ 18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850 hPa are different from the temperature effect in middle-high-latitude inland. Moreover, the notable positive correlation between the δ 18O in precipitation and the dew-point deficit △Td at different altitudes is found at the three stations. On annual timescale, the annual precipitation amount weighted mean δ 18O display the negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in southwest China and generates abnormally strong rainfall on the way. Meanwhile, the ab- normally strong condensation process will release more condensed latent heat into atmosphere, and lead to the rise of atmospheric temperature during rainfall, but decline of the δ 18O in precipitation. On the contrary, in the years with abnormally weak summer monsoon, the abnormally weak condensation process will release less condensed latent heat into atmosphere, and lead to the decline of atmos- pheric temperature during rainfall, but increase of the δ 18O in precipitation.  相似文献   

11.
Temporal variability of the relationship between the phases of quasi-decadal oscillations (QDOs) of total ozone (TO), measured at the Arosa station, and the Ri international sunspot number have been analyzed for the period of 1932–2009. Before the 1970s, the maximum phase of ozone QDOs lagged behind solar activity variations by about 2.5–2.8 years and later outstripped by about 1.5 years. We assumed that the TO QDOs in midlatitudes of the Northern Hemisphere were close to being in resonance with solar activity oscillations in the period from the mid-1960s to the mid-1970s and assessed the characteristic delay period of TO QDOs. The global distribution of phases and amplitudes of TO QDOs have been studied for the period from 1979 to 2008 based on satellite data. The maximum phase of TO QDOs first onsets in northern middle and high latitudes and coincides with the end of the growth phase of the 11-year solar cycle. In the tropics, the maximum oscillation phase lags behind by 0.5–1 year. The maximum phase lag near 40–50° S is about two years. The latitudinal variations of the phase of TO QDOs have been approximated.  相似文献   

12.
The response of the thermobaric characteristics of the high-latitude troposphere to short-term events attributed to solar activity (solar cosmic rays and geomagnetic storms) has been investigated. The spatial manifestation of these disturbances in the troposphere is shown to be of a “focal” character. It is found that the manifestation is most evident in the cold period and depends on the properties of the underlying surface (land, ocean). The properties of the variations of the troposphere air temperature in the manifestation “foci” on the standard isobaric surfaces, as well as the variations of the altitude profile of temperature and the long-wave radiation flux at the upper boundary of the atmosphere, have been considered. The variations of the heat content of the high-latitude troposphere after solar flares have been analyzed. The variation of the thermobaric field is shown to be accompanied by the rearrangement of circulation forms in moderate and polar latitudes. The revealed properties are completely explained within the mechanism proposed here for the solar activity effect on the climatic characteristics of the troposphere.  相似文献   

13.
The excitation of long-period irregular pulsations in the 2.0–6.0 mHz range (ipcl pulsation series) in the Earth’s magnetosphere, depending on the set of solar wind plasma and IMF parameters, has been studied experimentally. It has been found that burst regimes are observed when the solar wind dynamic pressure and velocity are higher than V ∼ 320 km/s and P ∼ 1 nPa, respectively. It has been indicated that the dynamics of the ipcl pulsation intensity and fractal structure largely depend on the solar wind plasma velocity and magnetic pressure, respectively. An analysis of the relationship between the appearance of ipcl pulsation burst series and large-scale solar wind streams and polar coronal holes made it possible to identify solar geoeffective regions, which can cause solar wind streams and Alfvén waves that promote the generation of burst regimes. On the basis of the studied conditions of the interplanetary medium, favourable for the excitation of ipcl pulsation burst series, and generalization of morphological patterns, the possible mechanisms of their generation have been considerded. It has been demonstrated that ipcl burst regimes are most probably generated as wind instability in hydrodynamics (the Miles-Phillips mechanism). The Miles-Phillips instability is related to different factors in the solar wind stream, among which turbulence, the threshold velocity value, and pressure fluctuations play a defining role. Precisely these regularities are typical of the ipcl burst regime generation conditions.  相似文献   

14.
Summary Using the long-term relations between solar motion and solar activity, long-term relations between solar activity and air temperature variations on the Earth's surface have been studied. A long-term periodicity in the period range from 25 to 250 years, corresponding to the periodicity of solar motion and solar activity, has been found in four very long European surface air temperature series. The positions of the spectral peaks approximately obey the relation pi=178.7/i, i=1, 2, ... . Similar long-term patterns of solar and geomagnetic activity and of global surface air temperature have been found in the years 1861 to 1990. The results indicate that the solar activity impact on the climate could be significant, and that the prolonged minimum of solar activity, predicted from solar motion for the next 2 – 3 decades, could decreace global air temperatures.  相似文献   

15.
The relationships between the average hourly values of the vertical ground-level electric field measured at the Vostok Antarctic station and the ionospheric potential above the station have been obtained. The ΔEz and Uext parts of both parameters controlled by the solar wind were considered. Convection models (Weimer, 1995; Lukianova and Christiansen, 2006) and a model based on the SuperDARN radar system were used to determine the ionospheric potential. An analysis has been performed for isolated days and the entire sample in 1998–2000 (including 170 days of “fine weather”). For an isolated day, the best correlation coefficients (R) between ΔEz and Uext obtained using the three models were 0.81, 0.80, and 0.88, respectively. The total correlation coefficient for the entire data set was R = 0.24−0.32. The R value was larger during daytime (R ≈ 0.4) and smaller at night (R ≈ 0.1) and slightly increased in the early morning hours. The specific features of daily variations in R apparently indicate that it is possible to adequately describe the structure of the ionospheric electric field equipotentials by using large-scale stationary convection models. The R value varies complexly, depending on the IMF orientation, but it generally tends to increase from IMF By < 0 to By > 0, which is explained by the asymmetric convection patterns for opposite By signs.  相似文献   

16.
The velocities of the stationary extra-ecliptic solar wind are analyzed depending on the heliolatitudes, heliocentric distances, and solar activity. An analysis has been performed using the direct measurements of the solar plasma flux velocities onboard Ulysses and the simultaneous ground-based IPS observations. The arguments for the hypothesis that primary high-speed (V ∼ 900 km/s) flows exist at the corona bottom and are directly related to the photosphere and solar magnetic fields are presented. The possible mechanism by which high-speed streams are generated is generally considered.  相似文献   

17.
The studies are based on the experimental mass sounding of the interplanetary plasma near the Sun at radial distances of R = 4−70 R S, performed at Pushchino RAO, Russian Academy of Sciences, and on the calculated magnetic fields in the solar corona based on the magnetic field strength and structure measured on the Sun’s surface at J. Wilcox Solar Observatory, United States. The experimental data make it possible to localize the position of the boundary closest to the Sun of the transition transonic region of the solar wind in the near-solar space (R ≈ 10−20 R S) and to perform an interrelated study of the solar wind structure and its sources, namely, the magnetic field components in the solar corona based on these data. An analysis of the evolution of the flow types in 2000–2007 makes it possible to formulate the physically justified criterion responsible for the time boundaries of different epochs in the solar activity cycle.  相似文献   

18.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

19.
Based on TIMS U-series dating results and annual band counting method, an annual-resolution time scale from 17450 to 14420 aBP has been established for a stalagmite from the Hulu Cave at Tangshan, Nanjing. A high-resolution oxygen isotopic record reveals decadral-centural oscillations in air temperature in the East Asian monsoon climate area during the last glacial maximum. The most conspicuous feature in the oxygen isotopic record in the period is the particular cold event synchronized with the last Heinrich event (H1) in the northern Atlantic deep-sea records. This particular cold event, beginning at 16140 ± 100 aBP, shows a rapid cooling down with a magnitude of 7–8°C in air temperature within 36 years. Furthermore, δ18O record demonstrates that the event lasted 790 years with gradually warming tendency (10 cycles of air temperature oscillations) after the remarkable cooling down. We believed that this unique pattern of event recorded in the stalagmite δ8O might be controlled by various factors including changes of insolation at mid-latitude Northern Hemisphere, the southern extend of the last ice-rafted event in the North Atlantic and changes of the Equatorial Pacific sea surface temperature.  相似文献   

20.
Such high-resolution indirect data on solar activity as the 14C and 10Be cosmogenic isotopes have been considered. The long-term solar activity cyclicity during the last millennium with periods of approximately 90 and 210 years, which can be related to substantial climatic warming and cooling events in this millennium, has been established based on an analysis of these data. It has been indicated that long-term recent climate warming can result from the effect of the ∼90- and ∼210-year solar cycles on the climatic system, which is characterized by the nonlinear dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号