首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

2.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

3.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

4.
In connection with the appearance of the first results of infrared observations of stellar flares, a more elaborate analysis ofnegative infrared flares as a phenomenon, predicted by the fastelectron hypothesis, has been carried out. As a result, the wavelength regions of negative flares are established for the stars of different spectral types as well as the calculated amplitudes of the negative flares (Tables I and II). The analysis of the infrared observations (c.f. Kilyachkoet al., 1978) lead to the following conclusions:
  1. The negative infrared flares discovered around 8000 Å is not in agreement with the theory in the case of the flare star UV Cet. Some traces of negative flares have been noted for a number of less powerful flares of EV Lac.
  2. The amplitudes of the recorded positive flares of UV Cet and EV Lac on λ8000 Å are in good agreement with the magnitudes predicted by the fast-electron hypothesis (non-thermal bremsstrahlung).
  3. In the future the negative flares around 8000 Å should be looked for in early-type flare stars of types M0-K5.
  4. For a positive discovery of negative flares, future observations must be carried out in the wavelength region of 1–3 μm.
  相似文献   

5.
X-ray, extreme-ultraviolet and optical observations of a solar flare are discussed. It is shown that the flare exemplifies a class of transient events characterized by long duration and long decay time and by the development of high systems of loops, generally brighter at the top. In contrast with compact short lifetime events, the distinctive properties of this class of transients are:
  1. The disruption of the magnetic configuration at the flare onset, as indicated by prominence eruption or activation and by associated white-light coronal transients;
  2. a continuous energy deposition, presumably at the top of loops, during a large fraction of the flare development and well after the intensity peak;
  3. a continuous supply of additional material to the top of loops, with subsequent downflows and out-of-hydrostatic equilibrium conditions.
  相似文献   

6.
The question of the chromospheric features type III association is reconsidered by using Hα filtergrams both on and off band. A set of 44 metric type III groups, for which an association can be ascertained with a high degree of confidence leads to the following results:
  1. The type III's have a dual chromospheric association. Sometimes they are related to a flare, sometimes to a perturbation of a different kind. The latter is seen in absorption in the Hα core and ±0.75 Å away. It is interpreted as a rather dense and cool material in motion in the chromosphere or the low corona. A part of which moves downward, the other upward. The type III's are more closely related to the downward motion.
  2. The type III associated absorbing features take place at the border of an active center and along an H = 0 line. At the present time this appears as the most conspicuous property for marking them off from the great variety of the Hα absorbing features commonly observed on the Sun.
  3. Most of the type III associated flares are related to an absorbing feature of the same kind, which appears before the flare itself. This indicates that the initial instability which is responsible for the type III emission is basically the same, whether the bursts are flare associated or not.
Our observations give good evidence that an efficient acceleration of 10–100 keV electrons occur also in the absence of flares. Furthermore the chromospheric perturbation involved in this acceleration is, in many cases, clearly associated to the triggering of a flare. A tentative model is proposed. We assume that in relation with the Hα absorbing feature a stream of fast electrons is accelerated which in turn, under suitable conditions, triggers both the flare and the type III's at the same time.  相似文献   

7.
8.
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
  1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
  2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
  3. the upper limit of the turbulent oscillation level in flares is evaluated.
In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

9.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

10.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

11.
The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
  1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
  2. Multi-thermal Conduction Cooling Delays
  3. Chromospheric Altitude of Hard X-Ray Emission
  4. Evidence for Dipolar Reconnection Current Sheets
  5. Footpoint Motion and Reconnection Rate
  6. Evidence for Tripolar Magnetic Reconnection
  7. Displaced Electron and Ion Acceleration Sources.
  相似文献   

12.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

13.
Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.
  1. The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.
  2. The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.
  3. The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.
  4. Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.
  5. Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.
  相似文献   

14.
A. D. Fokker 《Solar physics》1980,67(1):101-108
A microwave magnitude is defined as a logarithmic measure of the energy content of a microwave event. The distributions of microwave magnitudes are derived for collections of bursts that:
  1. Occurred during two periods in solar cycle 20, one relatively early and the other relatively late;
  2. Occurred in association with optical flares in particular centres of activity.
No dependence on the phase in the solar cycle has been found. One centre of activity was found that produced a distribution different from normal. The distribution of microwave magnitudes can be satisfactorily represented by the expression n(m) = const (m/α)e ?(m/α) 2. A phenomenological model for the flare build-up process is indicated which leads to a distribution of this very shape.  相似文献   

15.
Using eighteen years of observations at Big Bear, we summarize the development of δ spots and the great flares they produce. We find δ groups to develop in three ways: eruption of a single complex active region formed below the surface, eruption of large satellite spots near (particularly in front of) a large older spot, or collision of spots of opposite polarity from different dipoles. Our sample of twenty-one δ spots shows that once they lock together, they never separate, although rarely an umbra is ejected. The δ spots are already disposed to their final form when they emerge. The driving force for the shear is spot motion, either flux emergence or the forward motion of p spots in an inverted magnetic configuration. We observe the following phenomena preceding great flares:
  1. δ spots, preferentially Types 1 and 2.
  2. Umbrae obscured by Hα emission.
  3. Bright Hα emission marking flux emergence and reconnection.
  4. Greatly sheared magnetic configurations, marked by penumbral and Hα fibrils parallel to the inversion line.
We assert that with adequate spatial resolution one may predict the occurrence of great flares with these indicators.  相似文献   

16.
Recent gamma-ray observations of solar flares have provided a better means for estimating the heating of the solar atmosphere by energetic protons. Such heating has been suggested as the explanation of the continuum emission of the white-light flare. We have analyzed the effects on the photosphere of high-energy particles capable of producing the intense gamma-ray emission observed in the 1978 July 11 flare. Using a simple energy-balance argument and taking into account hydrogen ionization, we have obtained the following conclusions:
  1. Heating near τ5000 = 1 in the input HSRA model atmosphere is negligible, even for very high fluxes of energetic particles.
  2. Energy deposition increases with height for the inferred proton spectra, and does not depend strongly upon the assumed angle of incidence. The computed energy inputs fall in the range 10–100 ergs (cm3 s)?1 at the top of the photosphere.
  3. H? continuum dominates for column densities as small as 1022 cm?3, but at greater heights hydrogen ionizes sufficiently for the higher continua to dominate the energy balance.
  4. The total energy deposited in the ‘photospheric’ region of H? dominance could be within a factor of 3 of the necessary energy deposition, by comparison with the white-light flare of 1972 August 7, but the emergent spectrum is quite red so that the intensity excess in the visible band is insufficient to explain the observations.
In summary, it remains energetically possible, within observational limits, that high-energy protons could cause sufficient heating of the upper photosphere to produce detectable excess continuum, but emission from the vicinity of τ = 1 is not significant.  相似文献   

17.
Large number of microwave antennas of size and surface accuracy appropriate for the Square Kilometre Array (SKA) have not been manufactured previously. To minimize total cost, the design needs to be much more carefully considered and optimized than would be affordable for a small number of antennas. The required surface area requires new methods of manufacture and production-line type assembly to be considered. A blend of past antenna construction technology, creativity, and new technology is needed to provide the best possible telescope for the proposed SKA science goals. The following key concepts will be discussed with respect to reflector antennas and many supporting photographs, figures and drawings will be included.
  • Surface and supporting structure – comparison of panels with a one-piece shell as produced by hydroforming.
  • Combined reflector and mount geometry – performance/cost materially governed by this geometry which must be optimized for SKA requirements which are significantly different from typical communications antennas
  • Types of fully steerable mounts – king post, turntable bearing and wheel and track
  • Pointing accuracy – factors effecting cost, non-repeatable and repeatable errors
  • Axis drive concepts – traction devices, gears, screws, etc.
  • Life cycle costs – maintenance and power costs must be considered
  • Synergistic design – all of the above factors must be considered together with the wideband feed and receiver system to optimize the whole system
  •   相似文献   

    18.
    We report the results of the application of our approach to study the behavior of solar activity in the past, where:
  • When reconstructing the variations of solar activity, geomagnetic parameters, and the interplanetary magnetic field in the past we select a sequence of increasing time scales, which can be naturally represented by the potentials of available observational data. We select a total of four time scales: 150–200 years, 400 years, 1000 years, and 10000 years.
  • When constructing the series of each successive (in terms of length) time scale we use the data of the previous time scale as reference data.
  • We abandon, where possible, the series of traditional statistical parameters in favor of the series of physical parameters.
  • When deriving the relations between any parameters of solar activity, geomagnetic disturbance, and the interplanetary magnetic field, we take into account the differential nature of relations on different time scales. To this end, we use the earlier proposed MSR and DPS methods.
  • To verify the resulting reconstructions, we use the “principle of witnesses”, which uses independent (in some cases, indirect) information as initial data.
  •   相似文献   

    19.
    At the Swedish Solar Observatory in Anacapri we have simultaneously used the following combination of instruments in our investigation of active regions:
    1. A spectrograph with an image rotator placed in front of the slit.
    2. A subtractive double dispersive spectrograph (solar Chromatograph).
    3. A Hα+0.5 Å patrol instrument. Scans over the 3b flare of August 4th 1972 are used to illustrate the method. The illustrations clearly show downflowing matter connected with bright knots and filaments in the emitting area, possibly in accordance with Hyder's infall-impact mechanism.
      相似文献   

    20.
    Thomas N. Woods 《Solar physics》2014,289(9):3391-3401
    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is then exploited to estimate the frequency of EUV late-phase flares during the past four solar cycles. This study indicates that the frequency of EUV late-phase flares peaks before and after each solar-cycle minimum.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号