首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In remote sensing–based forest aboveground biomass (AGB) estimation research, data saturation in Landsat and radar data is well known, but how to reduce this problem for improving AGB estimation has not been fully examined. Different vegetation types have their own species composition and stand structure, thus they have different data saturation values in Landsat or radar data. Optical and radar data also have different characteristics in representing forest stand structures, thus effective use of their features may improve AGB estimation. This research examines the effects of Landsat Thematic Mapper (TM) and ALOS PALSAR L-band data and their integrations in forest AGB estimation of Zhejiang Province, China, and the roles of textural images from both datasets. The linear regression models of AGB were conducted by using (1) Landsat TM alone, (2) ALOS PALSAR data alone, (3) their combination as extra bands, and (4) their data fusion, based on non-stratification and stratification of vegetation types, respectively. The results show that (1) overall, Landsat TM data perform better than PALSAR data, but the latter can produce more accurate estimates for bamboo and shrub, and for forests with AGB values less than 60 Mg/ha; (2) the combination of TM and PALSAR data as extra bands can greatly improve AGB estimation performance, but their fusion using the modified high-pass filter resolution-merging technique cannot; (3) textures are indeed valuable in AGB estimation, especially for forests with complex stand structures such as mixed forests and pine forests with understories of broadleaf species; (4) stratification of vegetation types can improve AGB estimation performance; and (5) the results from the linear regression models are characterized by overestimation and underestimation for the smaller and larger AGB values, respectively, and thus, selecting non-linear models or non-parametric algorithms may be needed in future research.  相似文献   

2.
Accurate estimation of forest aboveground biomass (AGB) using remote sensing is a requisite for monitoring, reporting and verification (MRV) system of the United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation. However, attaining high accuracy remains a great challenge in the diverse tropical forests. Among available technologies, l-band Synthetic Aperture Radar (SAR) estimates AGB with reasonably high accuracy in the terrestrial tropical forests. Nevertheless, the accuracy is relatively low in the mangrove forests. In this context, the study was carried out to model and map AGB using backscatter coefficients of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array l-band SAR-2 (PALSAR-2) in part of the restored mangrove forest at Mahakam Delta, Indonesia. PALSAR-2 data was acquired with image scene observation during the peak low tide on 30 July 2018 from Japan Aerospace Exploration Agency. The forest parameters namely tree height and diameter at breast height were measured from 71 field plots in September-October 2018. The parameters were used in mangrove allometry to calculate the field AGB. Finally, HV polarized backscatter coefficients of PALSAR-2 were used to model AGB using linear regression. The model demonstrated a comparatively high performance using three distinct methods viz. independent validation (R2 of 0.89 and RMSE of 23.16 tons ha−1), random k-fold cross validation (R2 of 0.89 and RMSE of 24.59 tons ha−1) and leave location out cross validation (LLO CV) (R2 of 0.88 and RMSE of 24.05 tons ha−1). The high accuracy of the LLO CV indicates no spatial overfitting in the model. Thus, the model based on LLO CV was used to map AGB in the study area. This is the first study that successfully obtains high accuracy in modeling AGB in the mangrove forest. Therefore, it offers a significant contribution to the MRV mechanism for monitoring mangrove forests in the tropics and sub-tropics.  相似文献   

3.
Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data from different observation modes were analysed to determine (1) which observation mode most accurately retrieves tropical forest biomass information and (2) whether different modes, when considered together, yield improved results in comparison to identical data-sets analysed independently. We performed regression analysis to estimate above-ground forest biomass using PALSAR backscatter data for natural and planted forests in south-eastern Bangladesh. The coefficient of determination (r 2) was lower or equal to 0.499 (n = 70) when PALSAR data from different observation modes were separately considered, but increased sharply when one class (rubber) is dropped and average backscatter of fine beam single (FBS) and polrimetric (PLR) modes are used in the analysis. The results presented in this article are useful for both regional and global forest biomass inventories and fixing acquisition modes for planned L-band SAR missions.  相似文献   

4.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests.  相似文献   

5.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   

6.
WorldView-2纹理的森林地上生物量反演   总被引:1,自引:0,他引:1  
使用高空间分辨率卫星WorldView-2的多光谱遥感影像,构建植被指数和纹理因子等遥感因子与森林地上生物量的关系方程,并计算模型估测精度和均方根误差,探索高分辨率数据的光谱与纹理信息在温带森林地上生物量估测应用中的潜力。以黑龙江省凉水自然保护区温带天然林及天然次生林为研究对象,通过灰度共生矩阵(GLCM)、灰度差分向量(GLDV)及和差直方图(SADH)对高分辨率遥感影像进行纹理信息提取,并利用外业调查的74个样地地上生物量与遥感因子建立参数估计模型。提取的遥感因子包括6种植被指数(比值植被指数RVI、差值植被指数DVI、规一化植被指数NDVI、增强植被指数EVI、土壤调节植被指数SAVI和修正的土壤调节植被指数MSAVI)以及3类纹理因子(GLCM、GLDV和SADH)。为避免特征变量个数较多对估测模型造成过拟合,利用随机森林算法对提取的遥感因子进行特征选择,将最优的特征变量输入模型参与建模估测。采用支持向量回归(SVR)进行生物量建模及验证,结果显示选入模型的和差直方图均值(sadh_mean)、灰度共生矩阵方差(glcm_var)和差值植被指数(DVI)等遥感因子对森林地上生物量有较好的解释效果;植被指数+纹理因子组合的模型获得较精确的AGB估算结果(R2=0.85,RMSE=42.30 t/ha),单独使用植被指数的模型精度则较低(R~2=0.69,RMSE=61.13 t/ha)。  相似文献   

7.
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with missing sample observations in inaccessible areas. Here, we report the results of a study conducted in a 15,867 km² area in the dry miombo woodlands of Tanzania, to quantify the contribution of existing canopy height and biomass maps to improving the precision of canopy height and AGB estimates locally. A local and a global height map and three global biomass maps, and a probability sample of 513 inventory plots were subject to analysis. Model-assisted sampling estimators were used to estimate mean height and AGB across the study area using the original maps and then with the maps calibrated with local inventory plots. Large systematic map errors – positive or negative – were found for all the maps, with systematic errors as great as 60–70 %. After being calibrated locally, the maps contributed substantially to increasing the precision of both mean height and mean AGB estimates, with relative efficiencies (variance of the field-based estimates relative to the variance of the map-assisted estimates) of 1.3–2.7 for the overall estimates. The study, although focused on a relatively small area of dry tropical forests, illustrates the potential strengths and weaknesses of existing global forest height and biomass maps based on remotely sensed data and universal prediction models. Our results suggest that the use of regional or local inventory data for calibration can substantially increase the precision of map-based estimates and their applications in assessing forest carbon stocks for emission reduction programs and policy and financial decisions.  相似文献   

8.
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with missing sample observations in inaccessible areas. Here, we report the results of a study conducted in a 15,867 km² area in the dry miombo woodlands of Tanzania, to quantify the contribution of existing canopy height and biomass maps to improving the precision of canopy height and AGB estimates locally. A local and a global height map and three global biomass maps, and a probability sample of 513 inventory plots were subject to analysis. Model-assisted sampling estimators were used to estimate mean height and AGB across the study area using the original maps and then with the maps calibrated with local inventory plots. Large systematic map errors – positive or negative – were found for all the maps, with systematic errors as great as 60–70 %. The maps contributed nothing or even negatively to the precision of mean height and mean AGB estimates. However, after being calibrated locally, the maps contributed substantially to increasing the precision of both mean height and mean AGB estimates, with relative efficiencies (variance of the field-based estimates relative to the variance of the map-assisted estimates) of 1.3–2.7 for the overall estimates. The study, although focused on a relatively small area of dry tropical forests, illustrates the potential strengths and weaknesses of existing global forest height and biomass maps based on remotely sensed data and universal prediction models. Our results suggest that the use of regional or local inventory data for calibration can substantially increase the precision of map-based estimates and their applications in assessing forest carbon stocks for emission reduction programs and policy and financial decisions.  相似文献   

9.
时序双极化SAR开采沉陷区土壤水分估计   总被引:1,自引:0,他引:1  
马威  陈登魁  杨娜  马超 《遥感学报》2018,22(3):521-534
开采沉陷地质灾害诱发矿区生态环境恶化的关键因子是土壤水分变化。研究提出了一种利用Sentinel-1A双极化SAR和OLI地表反射率数据联合反演土壤含水量的方法,即基于归一化水体指数(NDWI)反演植被含水量;采用Water-Cloud Model(WCM)模型消除植被对Sentinel-1A后向散射系数产生的影响,将其转化为裸土区的后向散射系数;利用基于AIEM模型和Oh模型建立的经验模型反演研究区地表参数,并用OLI光学反演结果进行验证;最后比较了开采沉陷区内外土壤水分含量。研究表明:(1)与基于OLI的土壤水分监测指数(SMMI)的土壤水分含量反演结果相比,两种极化方式中VH极化反演的水分结果具有更好的一致性,且两种极化方式反演结果也表明荒漠化草原区比黄土丘陵沟壑区反演效果更好,说明地形对后向散射的影响不可忽略。(2)在2016年内72期数据中,VH极化反演结果对比区土壤水分含量大于沉陷区的有41期,所占比例为57%;VV极化反演结果对比区土壤水分含量大于沉陷区的有36期,所占比例为50%,且不同矿区内的沉陷区受到的影响不同。说明开采沉陷造成的地表粗糙度的增加会对地表土壤水分产生负面影响,但不同矿区之间又有差异。  相似文献   

10.
In this study, we have demonstrated the capability of full polarimetric ALOS/Phased Array L-band Synthetic Aperture Radar data for the characterization of the forests and deforestation in Cambodia, to support climate change mitigation policies of Reducing Emission from Deforestation and Forest Degradation (REDD). We have observed mean backscattering coefficient (σ°), entropy (H), alpha angle (α), anisotropy (A), pedestal height (PH), Radar Vegetation Index (RVI) and Freeman–Durden three-component decomposition parameters. The observations show that the forest types and deforested area are showing variable polarimetric and backscattering properties because of the structural difference. Evergreen forest is characterized by a high value of σ° HV (?12.96 dB) as compared with the deforested area (σ° HV=?22.2 dB). The value of polarimetric parameters such as entropy (0.93), RVI (0.91), PH (0.41) and Freeman–Durden volume scattering (0.43) is high for evergreen forest, whereas deforested area is characterized by the low values of entropy (0.36) and RVI (0.17). Based on these parameters, it is found that σ° HV, entropy, RVI and PH provide best results among other parameters.  相似文献   

11.
This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.  相似文献   

12.
Integration of satellite remote sensing data and GIS techniques is an applicable approach for landslide mapping and assessment in highly vegetated regions with a tropical climate. In recent years, there have been many severe flooding and landslide events with significant damage to livestock, agricultural crop, homes, and businesses in the Kelantan river basin, Peninsular Malaysia. In this investigation, Landsat-8 and phased array type L-band synthetic aperture radar-2 (PALSAR-2) datasets and analytical hierarchy process (AHP) approach were used to map landslide in Kelantan river basin, Peninsular Malaysia. Landslides were determined by tracking changes in vegetation pixel data using Landsat-8 images that acquired before and after flooding. The PALSAR-2 data were used for comprehensive analysis of major geological structures and detailed characterizations of lineaments in the state of Kelantan. AHP approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index, land cover, distance to drainage, precipitation, distance to fault, and distance to the road were extracted from remotely sensed data and fieldwork to apply AHP approach. The excessive rainfall during the flood episode is a paramount factor for numerous landslide occurrences at various magnitudes, therefore, rainfall analysis was carried out based on daily precipitation before and during flood episode in the Kelantan state. The main triggering factors for landslides are mainly due to the extreme precipitation rate during the flooding period, apart from the favorable environmental factors such as removal of vegetation within slope areas, and also landscape development near slopes. Two main outputs of this study were landslide inventory occurrences map during 2014 flooding episode and landslide susceptibility map for entire Kelantan state. Modeled/predicted landslides with a susceptible map generated prior and post-flood episode, confirmed that intense rainfall throughout Kelantan has contributed to produce numerous landslides with various sizes. It is concluded that precipitation is the most influential factor for landslide event. According to the landslide susceptibility map, 65% of the river basin of Kelantan is found to be under the category of low landslide susceptibility zone, while 35% class in a high-altitude segment of the south and south-western part of the Kelantan state located within high susceptibility zone. Further actions and caution need to be remarked by the local related authority of the Kelantan state in very high susceptibility zone to avoid further wealth and people loss in the future. Geo-hazard mitigation programs must be conducted in the landslide recurrence regions for reducing natural catastrophes leading to loss of financial investments and death in the Kelantan river basin. This investigation indicates that integration of Landsat-8 and PALSAR-2 remotely sensed data and GIS techniques is an applicable tool for Landslide mapping and assessment in tropical environments.  相似文献   

13.
GLAS星载激光雷达和Landsat/ETM+数据的森林生物量估算   总被引:1,自引:0,他引:1  
基于大脚印激光雷达数据和野外观测数据,该文提出一种获取脚印点内森林生物量的新思路,并结合陆地卫星数据应用于长白山地区森林地上生物量估算。首先,基于3种森林类型(针叶林、阔叶林和针阔混交林),采用多元逐步回归方法建立激光雷达波形指数与脚印点内实测平均树高的回归模型,估算全部脚印点内的平均树高;然后根据脚印点内样方的野外观测数据(平均树高和平均胸径)以及它们与样方生物量的拟合方程估算没有野外调查数据对应的脚印点的生物量;最后对3种森林类型的脚印点森林生物量在各森林覆盖度条件下进行分层分区统计得到生物量等级图。验证比较遥感估算的生物量与野外调查数据推算的生物量,总体误差在0~30(t·hm~(-2))之间,均方根误差为14.66(t·hm~(-2))。  相似文献   

14.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.  相似文献   

15.
The knowledge of biomass stocks in tropical forests is critical for climate change and ecosystem services studies. This research was conducted in a tropical rain forest located near the city of Libreville (the capital of Gabon), in the Akanda Peninsula. The forest cover was stratified in terms of mature, secondary and mangrove forests using Landsat-ETM data. A field inventory was conducted to measure the required basic forest parameters and estimate the aboveground biomass (AGB) and carbon over the different forest classes. The Shuttle Radar Topography Mission (SRTM) data were used in combination with ground-based GPS measurements to derive forest heights. Finally, the relationships between the estimated heights and AGB were established and validated. Highest biomass stocks were found in the mature stands (223 ± 37 MgC/ha), followed by the secondary forests (116 ± 17 MgC/ha) and finally the mangrove forests (36 ± 19 MgC/ha). Strong relationships were found between AGB and forest heights (R2 > 0.85).  相似文献   

16.
Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation.  相似文献   

17.
曹林  徐婷  申鑫  佘光辉 《遥感学报》2016,20(4):665-678
以亚热带天然次生林为研究对象,借助一个条带的少量LiDAR点云数据和覆盖整个研究区的免费Landsat OLI多光谱数据,并结合地面实测数据,探索森林生物量低成本高精度制图方法。首先,提取了OLI和LiDAR特征变量,并与地上和地下生物量进行相关分析以筛选变量;然后,借助LiDAR数据覆盖区的样地和条带LiDAR数据构建"LiDAR生物量模型";再从LiDAR反演生物量的结果中进行采样,结合OLI特征变量构建"LiDAR-OLI模型";最后,与单独使用OLI多光谱数据建立的"OLI估算模型"结果进行比较,分析精度并验证新方法的效果。结果表明,"LiDAR-OLI模型"对地上和地下生物量的模型拟合效果较好且均优于"OLI模型",且其交叉验证的精度也较高并优于"OLI模型",从而证明了新方法的可靠性及有效性。本研究为主、被动遥感技术在中小尺度上协同反演森林参数提供了实验基础,也为基于全覆盖免费OLI多光谱数据及条带LiDAR数据的低成本森林生物量制图探索了技术路线。  相似文献   

18.
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.  相似文献   

19.
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude–Pottier and Freeman–Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude–Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman–Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.  相似文献   

20.
Accurate spatio-temporal classification of crops is of prime importance for in-season crop monitoring. Synthetic Aperture Radar (SAR) data provides diverse physical information about crop morphology. In the present work, we propose a day-wise and a time-series approach for crop classification using full-polarimetric SAR data. In this context, the 4 × 4 real Kennaugh matrix representation of a full-polarimetric SAR data is utilized, which can provide valuable information about various morphological and dielectric attributes of a scatterer. The elements of the Kennaugh matrix are used as the parameters for the classification of crop types using the random forest and the extreme gradient boosting classifiers.The time-series approach uses data patterns throughout the whole growth period, while the day-wise approach analyzes the PolSAR data from each acquisition into a single data stack for training and validation. The main advantage of this approach is the possibility of generating an intermediate crop map, whenever a SAR acquisition is available for any particular day. Besides, the day-wise approach has the least climatic influence as compared to the time series approach. However, as time-series data retains the crop growth signature in the entire growth cycle, the classification accuracy is usually higher than the day-wise data.Within the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative, in situ measurements collected over the Canadian and Indian test sites and C-band full-polarimetric RADARSAT-2 data are used for the training and validation of the classifiers. Besides, the sensitivity of the Kennaugh matrix elements to crop morphology is apparent in this study. The overall classification accuracies of 87.75% and 80.41% are achieved for the time-series data over the Indian and Canadian test sites, respectively. However, for the day-wise data, a ∼6% decrease in the overall accuracy is observed for both the classifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号