首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearasfalciferrum Zone. Therefore,the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ^13C values of the kerogen (δ^13Ckerogen) fluctuating from -26.22 to -23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ^13Ckerogen values. The biological assemblage,characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.  相似文献   

2.
A sedimentological, biostratigraphical and geochemical (stable isotopes and Rock‐Eval parameters) analysis was performed on four Swiss successions, in order to examine the expression of the Toarcian Oceanic Anoxic Event along a north–south transect, from the Jura through the Alpine Tethys (Sub‐Briançonnais and Lombardian basins). The locations were selected to represent a range of palaeoceanographic positions from an epicontinental sea to a more open marine setting. The Toarcian Oceanic Anoxic Event was recognized by the presence of the characteristic negative carbon‐isotope excursion in carbonate (ca 2 to 4‰) and organic matter (ca 4 to 5‰) at the base of the falciferum ammonite Zone (NJT6 nannofossil Zone). The sedimentary expression of the Toarcian Oceanic Anoxic Event varies along the transect from laminated mudstone rich in total organic carbon (≤11 wt.%) in the Jura, to thin‐bedded marl (≤5 wt.% total organic carbon) in the Sub‐Briançonnais Basin and to hemipelagic reddish marly limestone (total organic carbon <0·05 wt.%) in equivalent levels from the Lombardian Basin. The carbon‐isotope excursion is thus independent of facies and palaeoceanographic position. The low nannofossil abundance and the peak in Calyculaceae in the Jura and the Sub‐Briançonnais Basin indicate low salinity surface waters and stratified water masses in general. Sedimentological observations (for example, obliquely‐bedded laminae and homogeneous mud layers containing rip‐up clasts) indicate the presence of dynamic conditions, suggesting that water mass stratification was episodically disrupted during the Toarcian Oceanic Anoxic Event. The proposed correlation highlights a stratigraphic gap and/or condensed interval between the Pliensbachian–Toarcian boundary and the Toarcian Oceanic Anoxic Event interval (most of the tenuicostatum ammonite Zone is missing), which is also observed in coeval European sections and points to the influence of sea‐level change and current dynamics. This transect shows that the sedimentary expression of the Toarcian Oceanic Anoxic Event is not uniform across the Alpine Tethys, supporting the importance of local conditions in determining how this event is recorded across different palaeoceanographic settings.  相似文献   

3.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   

4.
Severe global climate change led to the deterioration of environmental conditions in the oceans during the Toarcian Stage of the Jurassic. Carbonate platforms of the Western Tethys Ocean exposed in Alpine Tethyan mountain ranges today offer insight into this period of environmental upheaval. In addition to informing understanding of climate change in deep time, the effect of ancient carbon cycle perturbations on carbonate platforms has important implications for anthropogenic climate change; the patterns of early Toarcian environmental deterioration are similar to those occurring in modern oceans. This study focuses on the record of the early Toarcian Oceanic Anoxic Event (ca 183.1 Ma) in outcrops of the north‐west Adriatic Carbonate Platform in Slovenia. Amidst environmental deterioration, the north‐west Adriatic Platform abruptly transitioned from a healthy, shallow‐water environment with diverse metazoan ecosystems to a partially drowned setting with low diversity biota and diminished sedimentation. An organic carbon‐isotope excursion of ?2.2‰ reflects the massive injection of CO2 into the ocean‐atmosphere system and marks the stratigraphic position of the Toarcian Oceanic Anoxic Event. A prominent dissolution horizon and suppressed carbonate deposition on the platform are interpreted to reflect transient shoaling of the carbonate compensation depth to unprecedentedly shallow levels as the dramatic influx of CO2 overwhelmed the ocean’s buffering capacity, causing ocean acidification. Trace metal geochemistry and palaeoecology highlight water column deoxygenation, including the development of photic‐zone anoxia, preceding and during the Toarcian Oceanic Anoxic Event. Ocean acidification and reduced oxygen levels likely had a profoundly negative effect on carbonate‐producing biota and growth of the Adriatic Platform. These effects are consistent with the approximate doubling of the concentration of CO2 in the ocean‐atmosphere system from pre‐event levels, which has previously been linked to a volcanic triggering mechanism. Mercury enrichments discovered in this study support a temporal and genetic link between volcanism, the Toarcian Oceanic Anoxic Event and the carbonate crisis.  相似文献   

5.
The Cenomanian–Turonian boundary was characterized by distinctive positive carbon isotope excursions that were related to the formation of widespread oceanic anoxia. High-resolution geochemical proxies (TOC, CaCO3, δ13Corg, and δ13Ccarb) obtained from bulk rock, planktic foraminifers, and inoceramids from four marine marlstone-dominated stratigraphic sections in the Western Canada Sedimentary Basin (WCSB) were used to establish a regional carbon isotope stratigraphic framework and to investigate paleoenvironmental variability in four different depositional settings. Compared to background δ13Corg, (<−27‰) and δ13Ccarb (<2‰) values which were correlative to stable isotope excursions during Oceanic Anoxic Event (OAE) II worldwide, the δ13Corg (>24‰), and δ13Ccarb (>4‰) derived from inoceramid prisms in the studied sections within WCSB, were elevated during the Late Cenomanian–Early Turonian. During this interval, TOC and CaCO3 values which increased sporadically to >40% and 7%, respectively, were not consistent enough to be used for stratigraphic correlations. Based on the δ13Corg excursions, two bentonite beds were regionally correlated across this portion of the Western Interior Seaway (WIS). The eruption associated with the “Red” bentonite occurred approximately coeval with the maximum δ13Corg-excursion during OAE II in the Neocardioceras juddii Zone, whereas the “Blue” bentonite coincides with the termination of OAE II in the latest Watinoceras devonense zone. During the Late Cenomanian–Early Turonian in the WCSB, benthic foraminifers were sparse or totally absent, indicating the existence of fully anoxic bottom-water conditions. Planktic foraminifera were common in the well-oxygenated surface waters. A benthic oxic zone characterized by several agglutinated species occurs in the eastern part of the WSCB at the beginning of OAE II in the Sciponoceras gracile zone. The termination of the OAE II in the WCSB coincides with the first occurrence of small ammonites (Subprionocyclus sp.) in the western part of the basin.  相似文献   

6.
The sedimentary record of the Arabian Shelf offers a unique opportunity to study the Cretaceous (Albian–Turonian) greenhouse climate from a palaeoequatorial perspective. In particular, hemipelagic to pelagic carbonate successions from the extensive Shilaif intra‐shelf basin have the potential to produce an excellent record of carbon cycle perturbations during this interval. This study presents a 269 m thick chemostratigraphic (carbonate δ13C and δ18O) record from the Middle Albian to Early Turonian of central Abu Dhabi (United Arab Emirates), representing over 14 Myr of uninterrupted carbonate sedimentation. The Mauddud to Shilaif formations represent outer ramp to basinal intra‐shelf carbonates with variations from laminated organic‐rich to clean bioturbated intervals. Isotopic evidence of the latest Albian Anoxic Event (Oceanic Anoxic Event 1d), Middle Cenomanian Event I and the Cenomanian–Turonian Anoxic Event (Oceanic Anoxic Event 2) are confirmed and biostratigraphically calibrated by means of calcareous nannofossils. The carbon isotope record allows correlation with other regional records and well‐calibrated records across the Tethyan Ocean and represents a significant improvement of the chronostratigraphic framework of the United Arab Emirates (Shilaif) and Oman (Natih) intra‐shelf basins. The study further confirms that low carbon isotope values corresponding to the two source rock intervals in the Shilaif Formation clearly precede the isotopic expressions of Oceanic Anoxic Event 1d and Oceanic Anoxic Event 2.  相似文献   

7.
The early Aptian abrupt carbon isotope excursion in marine carbonate and sedimentary organic matter reflects a major perturbation in the global carbon cycle. However, until now almost all the evidences of this event came from marine deposits. Here we present organic-carbon isotope (δ13Corg) data from the non-marine Jehol Group in western Liaoning, China. The lacustrine δ13Corg curve is marked by a relative long-lasting δ13Corg minimum followed by two stages of positive δ13Corg excursions that are well correlated with contemporaneous marine records. The carbon isotope correlation shows that the lacustrine strata of the Jehol Group were deposited at the same time of the early Aptian Oceanic Anoxic Event (OAE1a). The relative long-lasting δ13Corg minimum supports the hypothesis that volcanic CO2 emission may have played the main role in triggering the negative δ13C excursion and global warming at the onset of this event. In addition, the onset of δ13Corg minimum is concomitant with the radiation of the Jehol Biota, implying that the evolutionary radiation of the Jehol Biota may have been closely related with the increase in atmospheric CO2 and temperature.  相似文献   

8.
Chemostratigraphic analyses (87Sr/86Sr, δ13Ccarb) of limestones from two Jurassic platform‐carbonate sequences in Italy (Trento and Campania–Lucania Platforms) illustrate previously established trends found in pelagic sediments and skeletal carbonates from biostratigraphically well‐calibrated sections elsewhere in Europe. Chemostratigraphic correlations between the platform‐carbonate successions and appropriate intervals from well‐dated reference sections allow the application of high‐resolution stratigraphy to these shallow‐water peritidal carbonates and, furthermore, elucidate the facies response to the Early Toarcian Oceanic Anoxic Event (OAE). Lower Jurassic (Toarcian) levels of the western Trento Platform (Southern Alps, Northern Italy) contain spiculitic cherts that appear where rising carbon‐isotope values characterize the onset of the OAE: a palaeoceanographic phenomenon interpreted as driven by increased nutrient levels in near‐surface waters. There is a facies change to more clay‐rich facies at the level of the abrupt negative carbon‐isotope excursion, also characteristic of the OAE, higher in the section. The Campania–Lucania Platform (Southern Apennines, Southern Italy) records a change to more clay‐rich facies where carbon‐isotope values begin to rise at the beginning of the OAE but the negative excursion, higher in the section, occurs within oolitic facies. Although, in both examples, the Early Toarcian OAE can be recognized by a change to more clay‐rich lithologies, this facies development is diachronous and in neither case did the platform drown. Although the Trento Platform, in the south‐west sector studied here, was adversely affected by the OAE, it did not drown definitively until Late Aalenian time; the Campania–Lucania Platform persisted throughout the Jurassic and Cretaceous. Differential subsidence rates, which can be calculated using comparative chemostratigraphy, are identified as a crucial factor in the divergent behaviour of these two carbonate platforms: relatively fast in the case of the Trento Platform; relatively slow in the case of the Campania–Lucania Platform. It is proposed that where water depths remained as shallow as a few metres during the OAE (Campania–Lucania Platform), dissolved oxygen levels remained high, nutrient levels relatively low and conditions for carbonate secretion and precipitation remained relatively favourable, whereas more poorly ventilated and/or more nutrient‐rich waters (Trento Platform) adversely influenced platform growth where depths were in the tens of metres range. The stage was thus set for drowning on the more rapidly subsiding western margin of the Trento Plateau and a pulse of oolite deposition post‐dating the OAE was insufficient to revitalize the carbonate factory.  相似文献   

9.
The sedimentary record of carbonate carbon isotopes (δ13Ccarb) provides one of the best methods for correlating marine strata and understanding the long‐term evolution of the global carbon cycle. This work focuses on the Late Ordovician Guttenberg isotopic carbon excursion, a ca 2·5‰ positive δ13Ccarb excursion that is found in strata globally. Substantial variability in the apparent magnitude and stratigraphic morphology of the Guttenberg excursion at different localities has hampered high‐resolution correlations and led to divergent reconstructions of ocean chemistry and the biogeochemical carbon cycle. This work investigates the magnitude, spatial scale and sources of isotopic variability of the Guttenberg excursion in two sections from Missouri, USA. Centimetre‐scale isotope transects revealed variations in δ13Ccarb and δ18Ocarb greater than 2‰ across individual beds. Linear δ13Ccarb to δ18Ocarb mixing lines, together with petrographic and elemental abundance data, demonstrate that much of the isotopic scatter in single beds is due to mixing of isotopically distinct components. These patterns facilitated objective sample screening to determine the ‘least‐altered’ data. A δ18Ocarb filter based on empirical δ18Ocarb values of well‐preserved carbonate mudstones allowed further sample discrimination. The resulting ‘least‐altered’ δ13Ccarb profile improves the understanding of regional as well as continental‐scale stratigraphic relations in this interval. Correlations with other Laurentian sections strongly suggest that: (i) small‐scale variability in Guttenberg excursion δ13Ccarb values may result in part from local diagenetic overprinting; (ii) peak‐Guttenberg excursion δ13Ccarb values of the Midcontinent are not distinct from their Taconic equivalents; and (iii) no primary continental‐scale spatial gradient in δ13Ccarb (for example, arising from chemically distinct ‘aquafacies’) is required during Guttenberg excursion‐time. This study demonstrates the importance of detailed petrographic and geochemical screening of samples to be used for δ13Ccarb chemostratigraphy and for enhancing understanding of epeiric ocean chemistry.  相似文献   

10.
During the Ordovician, huge biological revolutions and environmental changes happened in Earth’s history, including the Great Ordovician Biodiversification Event, global cooling and so on, but the cause of these events remains controversial. Herein, we conducted a paired carbon isotopic analysis of carbonate (δ13Ccarb) and organic matter (δ13Corg) through the Ordovician in the Qiliao section on the Yangtze platform of South China. Our results showed that the δ13Ccarb trend of the Qiliao section can be correlated with local and global curves. The δ13Corg trend seems is less clear than the δ13Ccarb trend for stratigraphic correlations, but some δ13Corg positive excursions in the Middle and Upper Ordovician may be used for correlation studies. These carbon isotopic records may have global significance rather than local significance, revealing several fluctuations to the global carbon cycle during the Ordovician. Several known δ13Ccarb and δ13Corg negative and positive excursions have been recognised in this study, including the early Floian Negative Inorganic Carbon (δ13Ccarb) Excursion (EFNICE), as well as the early Floian Positive Organic Carbon (δ13Ccarb) Excursion, the mid-Darriwilian Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (MDICE), and the early Katian Guttenberg Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (GICE). These positive excursions and a smooth decline trend of δ13Corg values during the early to mid-Floian may imply multiple episodes of enhanced organic carbon burial that began at the early Floian stage, probably resulting in further decline in atmospheric pCO2 and then global cooling.  相似文献   

11.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

12.
Palaeotemperature estimates from the oxygen‐isotope compositions of belemnites have been hampered by not knowing ancient seawater isotope compositions well enough. We have tackled this problem using Mg/Ca as a proxy for temperature and here, we present a ~2 Ma record of paired Mg/Ca and δ18O measurements of Jurassic (Early Pliensbachian) belemnites from the Asturian basin as a palaeo‐proxy of seawater oxygen‐isotope composition. From the combined use of the two approaches, we suggest a δ18Ow composition of about ?0.1‰ for the Jamesoni–Ibex zones. This value may have been increased by about 0.6‰ during the Davoei Zone due to the effect of waters with a different δ18Ow composition. These findings illustrate the inaccuracy of using a globally homogeneous ice‐free value of δ18Ow = ?1‰ for δ18Ocarb‐based palaeotemperature reconstructions. Our data suggest that previous palaeotemperatures calculated in the region from δ18O values of belemnites may have been underestimated as the seawater oxygen isotopic composition could have been higher.  相似文献   

13.
Large carbon cycle perturbations associated with the Middle Permian (Capitanian) mass extinction have been widely reported, but their causes and timing are still in dispute. Low resolution carbon isotope records prior to this event also limit the construction of a Middle Permian chemostratigraphic framework and global or local stratigraphic correlation, and hence limit our understanding of carbon cycle and environmental changes. To investigate these issues, we analyzed the 13Corg values from the Middle Permian chert-mudstone sequence (Gufeng Formation) in the Lower Yangtze deep-water basin (South China) and compared them with published records to build a chemostratigraphic scheme and discuss the underlying environmental events. The records show increased δ13Corg values from late Kungurian to early Guadalupian, followed by a decrease to the late Wordian/early Capitanian. The early-mid Capitanian was characterized by elevated δ13Corg values suggesting the presence of the “Kamura Event”: an interval of heavy positive values seen in the δ13Ccarb record. We propose that these heavy Capitanian δ13C values may be a response to a marked decline in chemical weathering rates on Pangea and associated reduction in carbonate burial, which we show using a biogeochemical model. The subsequent negative δ13C excursion seen in some carbonate records, especially in shallower-water sections (and in a muted expression in organic carbon) coincide with the Capitanian mass extinction may be caused by the input of isotopically-light carbon sourced from the terrestrial decomposition of organic matter.  相似文献   

14.
The 2.33–2.06 Ga positive δ13Ccarb excursion, associated with environmental change and the breakup of the Kenorland or Superia supercontinent, is called the Lomagundi or Jatulian Event or Great Oxidation Event, and has been reported in many Early Precambrian cratons, but not yet in the Sino-Korean craton. The Guanmenshan Formation of the Liaohe Group occurs in the northeastern part of the Sino-Korean craton. δ13Ccarb and δ18O values in 42 samples from this formation range from 3.5–5.9‰ (V-PDB), and 15.4–24.8‰ (V-SMOW), respectively, showing a clear positive δ13Ccarb excursion that characterizes the Lomagundi Event. Thirty-five of the 42 samples with less hydrothermal alteration have higher δ13Ccarb and δ18Ocarb values than the other 7 samples obviously affected by fluid flow, confirming that it was fluid flow that reduced the δ13Ccarb and δ18Ocarb values. This positive δ13Ccarb excursion places deposition of the Guanmenshan Formation within the age range of 2.33–2.06 Ga.  相似文献   

15.
Upper Barremian-Lower Aptian sediments of the Sarcheshmeh and Sanganeh formations in the Kopet Dagh area, northeast Iran were studied with regard to their calcareous nannofossil content and their δ13Ccarb signal. The sediments are composed mainly of marlstones, argillaceous limestones and limestones. Based on the occurrence of biostratigraphic index taxa, the calcareous nannofossil zones NC5, NC6 and the NC7A Subzone were recognised. The calcareous nannofossils and the δ13Ccarb data enable recognition of the early Aptian Oceanic Anoxic Event 1a (OAE 1a). The deposits of the OAE 1a interval are characterised by the rarity of nannoconids and a sharp negative δ13Ccarb excursion (1.36‰), followed by an abrupt positive δ13Ccarb excursion of 4-5‰; both events have been recognised elsewhere in OAE 1a deposits in the Tethys. In the OAE 1a interval, the relative abundance of Watznaueria barnesiae/Watznaueria fossacincta is higher (more than 40%) than that of Biscutum spp., Discorhabdus spp. and Zeugrhabdotus spp., which indicates dissolution. In the upper part of the section, the higher relative abundance of mesotrophic and oligotrophic taxa (Watznaueria spp. and nannoconids respectively) and the enhanced relative abundance of eutrophic taxa (Biscutum spp., Discorhabdus spp., Zeugrhabdotus spp.) is indicative of an environment with slightly increased nutrient content. The presence of warm water taxa (Rhagodiscus asper and nannoconids) and the absence of cool water taxa (Repagulum and Crucibiscutum) suggest warm surface-water conditions.  相似文献   

16.
Detailed sampling and analysis of Jurassic pelagic limestones and marls from Italy, Hungary and Switzerland have enabled construction of an isotope stratigraphy across the Pliensbachian-Toarcian boundary with resolution to the zonal level. The oxygen-isotope record is unremarkable. The carbon isotopes, however, show two positive excursions: one, relatively minor, during the Pliensbachian, margaritatus Zone, subnodosus Subzone, the other, more major, during the Toarcian. early falciferum Zone, where a maximum δ13C value of 4·52%PDB is attained. These intervals are known to be favoured periods of organic-rich sedimentation in diverse parts of the globe and the isotopic excursions are interpreted as a response to abnormally high rates of storage of organic carbon in the sedimentary record. A comparable phenomenon has been documented from the Cenomanian-Turonian boundary in the Cretaceous where it has been referred to the influence of an ‘Oceanic Anoxic Event’. Some Italian sections spanning this Lower Jurassic interval contain organic-rich shales in the falciferum Zone; the isotopic signatures from their included, locally manganiferous carbonate betray a considerable diagenetic overprint and they cannot therefore be incorporated in a composite isotopic curve. Carbon isotopes from the organic carbon itself are extremely negative, falling to –33δPDB and, in one section examined in detail, correlate with the calcium-carbonate content of the shales; they may reflect a partial change to a non-calcified planktonic biota during deposition of this lime-poor interval, possibly responding to upwelling and increased fertility of near-surface waters. The onset of upwelling may have been as early as spinatum-tenuicostatum Zone time, that is, at the Pliensbachian-Toarcian boundary.  相似文献   

17.
Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from −0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84–92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.  相似文献   

18.
Palaeontological data from the Permian‐Triassic Bulla section, northern Italy, demonstrate a rapid extinction at this site. This occurs after a negative carbonate carbon‐isotope (δ13Ccarb) shift, consistent with two other northern Italian sites (Val Badia and Tesero). However, conclusion goes against recent reporting that the extinction occurs before the δ13Ccarb shift. We agree that the shift occurs after the extinction at Jameson Land, east Greenland (a high latitude palaeolocation). However, all other sections show the shift before, or coincident with, the extinction. We suggest that the simplest explanation is a coeval shift in carbonate carbon‐isotope shifts, and it follows that the extinction was not. This suggests that the end‐Permian extinction crept from region to region. It also suggests that the marine extinction occurred first in high northern latitudes.  相似文献   

19.
《Gondwana Research》2014,25(3):1045-1056
A remarkable increase of the animal genera and a subsequent mass extinction in the late Early Cambrian are well known as the “Cambrian explosion” and the “Botomian–Toyonian crisis.” A composite global curve of the carbon isotope ratios for inorganic carbon (δ13Ccarb) shows multiple fluctuations during the evolution events, and it indicates significant changes of the oceanic carbon cycle at that time. This study reveals a new continuous isotopic chemostratigraphy for inorganic carbon (δ13Ccarb) from the bottom of the Shipai to the base of the Shilongdong formations in Three Gorges area, South China. This section covers the Canglangpuian to the Longwangmiaoian stages in the Lower Cambrian. The δ13Ccarb variation exhibits three negative excursions: a remarkably negative excursion down to ca. − 12‰ in the middle Canglangpuian stage, a negative excursion to ca. − 1.0‰ in the upper Canglangpuian stage, and a negative excursion to ca. − 1.0‰ in the Longwangmiaoian stage, respectively. The largest negative δ13Ccarb excursion and a positive excursion before the excursion are definitely consistent with the δ13Ccarb negative shift (AECE) during the mass extinction and the δ13Ccarb positive values (MICE) during the increase of animal genera, respectively. However, the minimum values of the negative shifts among South China, Siberia, and Canada sections are different from each other. The positive δ13Ccarb excursion at the bottom of the Canglangpuian stage indicates that primary productivities and organic carbon burial were enhanced. A sea level rise in the Qiongzhusian to bottom of the Canglangpuian stages in South China corresponds to the Sinsk transgression event in Siberia and Canada. A eutrophication due to higher continental weathering during the transgression after the long-term retrogression enhanced the high primary production and consequently promoted the significant increase of animal diversity.On the other hand, deposition of laminated black shales without bioturbation signatures and a decline of trilobite diversity are observed during the negative δ13Ccarb excursion in the Canglangpuian stage, indicating that the shallow water environment became anoxic at that time. The negative δ13Ccarb shift indicates an influx of abundant 12CO2 due to oxidation of organic carbons in seawater. The difference of the minimum values among sections implies the local difference in size of the organic carbon reservoirs and extent of the degradation of the carbons. The largest δ13C anomaly in South China suggests the presence of the largest OCPs due to higher activity of primary production and high degree of oxidation of the OCPs because of higher activity of animals. The coincidence of the timing of the negative δ13C excursions in the Canglangpuian stage among the sections indicates a global event, and suggests that the onset was caused by increase of oxygen contents of seawater and atmosphere. Abundant oxygen yielded by the increased primary productivity in the Atdabanian and the Qiongzhusian stages caused onset of the oxidation of OCP, and possibly led to the shallow water anoxia and the mass extinction of benthic animals in the Botomian and the Canglangpuian stage.  相似文献   

20.
The Early Jurassic period was characterized by extreme environmental changes, as reflected by major global carbon isotope anomalies and abrupt changes in oxygen isotope and elemental records of marine organisms. Available data suggest an overall warm Early Jurassic climate interrupted by periods of severe cooling, with a climatic optimum during the early Toarcian. Available geochemical studies, however, have mainly focused on the northern margin of the Tethys Ocean, so that the palaeogeographic extent of these environmental perturbations, latitudinal palaeotemperature gradients and climate belt boundaries remain poorly constrained. Here we report the first stable isotope records of brachiopod shells (δ13C and δ18O values) from the Upper Sinemurian-Middle Toarcian interval in the southern margin of the Tethys Ocean (northwest Algeria). These data were used to better constrain the palaeoenvironmental evolution of the North Gondwana margin during the Early Jurassic, which likely played an important role on supra-regional climate. The diagenetic history of the analysed brachiopod shells was monitored using scanning electron microscopy, and elemental (manganese and strontium) compositions. The brachiopod δ13C and δ18O data show very similar trends as those reported for various Tethyan regions, and record negative carbon and oxygen isotope excursions near the SinemurianPliensbachian and PliensbachianToarcian transitions and during the Toarcian oceanic anoxic event (T-OAE). Despite these similarities, the carbon and oxygen isotope records are systematically offset towards more positive δ13C values (average +0.5‰) and more negative δ18O values (−1.0‰) compared to those obtained from sites of higher palaeolatitudes in the northern Tethyan margin. These offsets suggest a spatial heterogeneity in the stable isotope composition of dissolved inorganic carbon in the Early Jurassic Ocean and a marked latitudinal temperature gradient between the southern and northern margins of the Tethys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号