首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We have constrained the time‐space migration of the Zagros foredeep basin by performing Sr isotope stratigraphy on 31 samples of marine macrofossils from Neogene sediments now exposed in the Zagros mountain belt in southwest Iran. Our results show that these deposits (represented mainly by the Mishan Formation) are strongly diachronous, with ages ranging between 17.2 ± 0.2 and 1.1 ± 0.1 Ma. These deposits are older in the west (Dezful region) and become progressively younger towards the south and the south‐east (Fars region). Our results show that the marine foredeep was replaced by a fluvial sedimentary environment between ca. 14 and 12 Ma in the western sector, while this occurred between ca. 8 and 1 Ma in the eastern sector, becoming younger towards the south. These results enable us to show that the foreland basin migrated perpendicular to the orogen at rates of between 17.5 and 50 mm year?1 throughout the Neogene, exceeding migration rates in the Alps, Pyrenees, Apennines and Himalayan foreland basins. The sporadically elevated rates in the Zagros appear to be related to times when major widely spaced pre‐existing basement faults became reactivated. Finally, our results, when combined with published data, have enabled us to establish a new chronostratigraphic diagram for the Neogene portion of the Zagros foreland basin. Our study highlights that foreland basins are extremely dynamic settings where depocentres and palaeoenvironments may change rapidly in both time and space in relation to migrating deformation.  相似文献   

2.
The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year?1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year?1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.  相似文献   

3.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

4.
《Basin Research》2018,30(3):564-585
Studies in both modern and ancient Cordilleran‐type orogenic systems suggest that processes associated with flat‐slab subduction control the geological and thermal history of the upper plate; however, these effects prove difficult to deconvolve from processes associated with normal subduction in an active orogenic system. We present new geochronological and thermochronological data from four depositional areas in the western Sierras Pampeanas above the Central Andean flat‐slab subduction zone between 27° S and 30° S evaluating the spatial and temporal thermal conditions of the Miocene–Pliocene foreland basin. Our results show that a relatively high late Miocene–early Pliocene geothermal gradient of 25–35 °C km−1 was typical of this region. The absence of along‐strike geothermal heterogeneities, as would be expected in the case of migrating flat‐slab subduction, suggests that either the response of the upper plate to refrigeration may be delayed by several millions of years or that subduction occurred normally throughout this region through the late Miocene. Exhumation of the foreland basin occurred nearly synchronously along strike from 27 to 30° S between ca. 7 Ma and 4 Ma. We propose that coincident flat‐slab subduction facilitated this wide‐spread exhumation event. Flexural modelling coupled with geohistory analysis show that dynamic subsidence and/or uplift associated with flat‐slab subduction is not required to explain the unique deep and narrow geometry of the foreland basin in the region implying that dynamic processes were a minor component in the creation of accommodation space during Miocene–Pliocene deposition.  相似文献   

5.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   

6.
The Ericson Formation was deposited in the distal foredeep of the Cordilleran foreland basin during Campanian time. Isopach data show that it records early dynamic subsidence and the onset of basin partitioning by Laramide uplifts. The Ericson Formation is well exposed around the Rock Springs uplift, a Laramide structural dome in southwestern Wyoming; the formation is thin, regionally extensive, and does not display the wedge‐shaped geometry typical of foredeep deposits. Sedimentation in this area was controlled both by activity in the thrust belt and by intraforeland tectonics. The Ericson Formation is ideally situated both spatially and temporally to study the transition from Sevier to Laramide (thin‐ to thick‐skinned) deformation which corresponded to the shift from flexural to dynamic subsidence and the demise of the Cretaceous foreland basin system. We establish the depositional age of the Ericson Formation as ca. 74 Ma through detrital zircon U–Pb analysis. Palaeocurrent data show a generally southeastward transport direction, but northward indicators near Flaming Gorge Reservoir suggest that the intraforeland Uinta uplift was rising and shedding sediment northward by late Campanian time. Petrographic data and detrital zircon U–Pb ages indicate that Ericson sediment was derived from erosion of Proterozoic quartzites and Palaeozoic and Mesozoic quartzose sandstones in the Sevier thrust belt to the west. The new data place temporal and geographic constraints on attempts to produce geodynamic models linking flat‐slab subduction of the oceanic Farallon plate to the onset of the Laramide orogenic event.  相似文献   

7.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

8.
Quaternary sea‐level cycles have caused dramatic depocentre shifts near the mouths of major rivers. The effects of these shifts on fault activity in passive margin settings is poorly known, as no studies have constrained passive margin fault throw‐rate variability over 103 to 105 year time scales. Here we present 11 mean throw rates for the Tepetate–Baton Rouge fault zone along the northern Gulf of Mexico coast in southern Louisiana. These data were obtained by optically stimulated luminescence dating over time scales spanning the last interglacial to the late Holocene. The mean throw rate is ca. 0.22 mm year?1 during the late Holocene, ca. 0.03 mm year?1 during the last glacial and at least 0.07 mm year?1 during the last interglacial. Throw rates averaged over the late Pleistocene to present are spatially uniform within our study area. The temporal variability in throw rates suggests that shifts of the Mississippi River depocentre relative to this fault zone, driven by Quaternary sea‐level cycles, may have imposed a significant control on fault activity. The late Holocene throw rate is at least in the order of magnitude smaller than the rates of land‐surface subsidence in the Mississippi Delta, indicating that this fault zone is not a dominant contributor to subsidence in this region.  相似文献   

9.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

10.
The Crotone Basin was generated in the late Cenozoic as a forearc basin of the Ionian arc‐trench system. New data are gained through detailed field mapping, high‐resolution stratigraphic analysis of a key area and examination of offshore well data and seismic reflection profiles. Major unconformities divide the basin fill into major sequences, which reveal a three‐stage internal organization thought to reflect geodynamic events of the Calabrian arc and backarc area closely. The first stage is characterized by extensional block faulting and uplift followed by rapid drowning during high subsidence and transtension in the basin along a major NNW‐ to NW‐striking fault system. This stage is interpreted to reflect resumption of rollback after an episode of slab tearing triggered by transitory docking of continental lithosphere in the trench. The initial uplift is inferred to reflect decoupling and rebound after the transitory coupling phase. The second stage is characterized by increased subsidence and continued extension/transtension. This trend presumably reflects a decreasing rate of rollback resulting from a tendency towards viscous coupling after acceleration of slab downwelling. The third stage is characterized by short‐lived transpression along major shear zones and local inversion of former basins. This is inferred to reflect entrance into the trench of buoyant continental lithosphere, resulting in significant deceleration of slab rollback and consequently a break in, or slowing of, backarc extension, and predominance of the effects of compression related to Africa–Europe convergence. Overall, the above evolution resulted in the formation of a progressively narrower and rapidly retreating slab, inducing extreme rates of backarc extension, and may have played a critical role in determining the intermittent nature of the backarc rifting.  相似文献   

11.
The Upper Mississippian (ca. 325 Ma) Pride Shale and Glady Fork Member in the Central Appalachian Basin comprise an upward‐coarsening, ca. 60‐m‐thick succession of prodeltaic‐delta front, interlaminated fine‐grained sandstones and mudstones gradational upwards into mouth‐bar and distributary‐channel sandstones. Analysis of laminae bundling in the Pride Shale reveals a hierarchy of tidal cycles (semi‐diurnal, fortnightly neap‐spring) and a distinct annual cyclicity resulting from seasonal fluvial discharge. These tidal rhythmites thus represent high‐resolution chronometers that can be used in basin analysis. Annual cycles average 10 cm in thickness, thus the bulk of the Pride Shale‐Glady Fork Member in any one vertical section is estimated to have accumulated in ca. 600 years. Progradational clinoforms are assumed to have had dips of 0.3–3° with a median dip of 1.7°; the latter infilled a NE‐SW oriented foreland trough up to 300 km long by 50 km wide in the relatively short time period of 90 kyr. The total volume of sediment in the Pride basin is ca. 900 km3 which, for an average sediment density of 2700 kg m?3, equates to a total mass of ca. 2.4 × 106 Mt. Thus, mass sediment load can be estimated as 27 Mt yr?1. For a drainage basin area of 89 000 km2, based on the scale of architectural channel elements and cross‐set thicknesses in the incised‐valley‐fill deposits of the underlying Princeton Formation, suspended sediment yields are estimated at ca. 310 t km?2 yr?1 equating to a mechanical denudation rate of ca. 0.116 mm yr?1. Calculated sediment yields and inferred denudation rates are comparable to modern rivers such as the Po and Fly and are compatible with a provenance of significant relief and a climate characterized by seasonal, monsoonal discharge. Inferred denudation rates also are consistent with average denudation rates for the Inner Piedmont Terrane of the Appalachians based on flexural modelling. The integration of stratigraphic architectural analysis with a novel chronometric application highlights the utility of sedimentary archives as a record of Earth surface dynamics.  相似文献   

12.
The Adana Basin of southern Turkey, located at the SE margin of the Central Anatolian Plateau in the vicinity of the Arabia‐Eurasia collision zone, is ideally suited to record Neogene and Quaternary topographic and tectonic changes in the easternmost Mediterranean realm. On the basis of our correlation of 34 seismic reflection profiles with corresponding exposed units along the margins of the Adana Basin, we identify and characterize the seismic facies that corresponds to the upper part of the Messinian Handere Formation (ca. 5.45 to 5.33 Ma), which consists mainly of fluvial conglomerates and marls. The seismic reflection profiles indicate that ca. 1100 km3 of the Handere Formation upper sub‐unit is distributed over ca. 3000 km2, reflecting local sedimentation rates of up to 12.5 mm year?1. This indicates a major increase in both sediment supply and subsidence rates at ca. 5.45 Ma. Our provenance analysis of the Handere Formation upper sub‐unit based on clast counting and palaeocurrent measurements reveals that most of the sediment is derived from the Taurus Mountains at the SE margin of the Central Anatolian Plateau and regions farther north. A comparison of these results with the composition of recent fluvial conglomerates and the present‐day drainage basins indicates major changes between late Messinian and present‐day source areas. We suggest that these changes in drainage patterns and lithological characteristics result from uplift and ensuing erosion of the SE margin of the plateau. We interpret the tectonic evolution of the southern flank of the Anatolian Plateau and the coeval subsidence and sedimentation in the Adana Basin to be related to deep lithospheric processes, particularly lithospheric delamination and slab break‐off.  相似文献   

13.
Deposition and subsidence analysis, coupled with previous structural studies of the Sevier thrust belt, provide a means of reconstructing the detailed kinematic history of depositional response to episodic thrusting in the Cordilleran foreland basin of southern Wyoming, western interior USA. The Upper Cretaceous basin fill is divided into five megasequences bounded by unconformities. The Sevier thrust belt in northern Utah and southwestern Wyoming deformed in an eastward progression of episodic thrusting. Three major episodes of displacement on the Willard‐Meade, Crawford and ‘early’ Absaroka thrusts occurred from Aptian to early Campanian, and the thrust wedge gradually became supercritically tapered. The Frontier Formation conglomerate, Echo Canyon and Weber Canyon Conglomerates and Little Muddy Creek Conglomerate were deposited in response to these major thrusting events. Corresponding to these proximal conglomerates within the thrust belt, Megasequences 1, 2 and 3 were developed in the distal foreland of southern Wyoming. Two‐dimensional (2‐D) subsidence analyses show that the basin was divided into foredeep, forebulge and backbulge depozones. Foredeep subsidence in Megasequences 1, 2 and 3, resulting from Willard‐Meade, Crawford and ‘early’ Absaroka thrust loading, were confined to a narrow zone in the western part of the basin. Subsidence in the broad region east of the forebulge was dominantly controlled by sediment loading and inferred dynamic subsidence. Individual subsidence curves are characterized by three stages from rapid to slow. Controlled by relationships between accommodation and sediment supply, the basin was filled with retrogradational shales during periods of rapid subsidence, followed by progradational coarse clastic wedges during periods of slow subsidence. During middle Campanian time (ca. 78.5–73.4 Ma), the thrust wedge was stalled because of wedge‐top erosion and became subcritical, and the foredeep zone eroded and rebounded because of isostasy. The eroded sediments were transported far from the thrust belt, and constitute Megasequence 4 that was mostly composed of fluvial and coastal plain depositional systems. Subsidence rates were very slow, because of post‐thrusting rebound, and the resulting 2‐D subsidence was lenticular in an east–west direction. During late Campanian to early Maastrichtian time, widespread deposits of coarse sediment (the Hams Fork Conglomerate) aggraded the top of the thrust wedge after it stalled, prior to initiation of ‘late’ Absaroka thrusting. Meanwhile Megasequence 5 was deposited in the Wyoming foreland under the influence of both the intraforeland Wind River basement uplift and the Sevier thrust belt.  相似文献   

14.
Geophysical data and sampling of the Golo Basin (East Corsica margin) provide the opportunity to study mass balance in a single drainage system over the last 130 kyr, by comparing deposited sediments in the sink and the maximum eroded volume in the source using total denudation proxies. Evaluation of the solid sediments deposited offshore and careful integration of uncertainties from the age model and physical properties allow us to constrain three periods of sedimentation during the last climatic cycle. The peak of sedimentation initiated during Marine Isotopic Stage (MIS) 3 (ca. 45 ka) and lasted until late in MIS 2 (ca. 18 ka). This correlates with Mediterranean Sea palaeoclimatic records and the glaciation in high altitude Corsica. The yield of solid sediment into the Golo Basin drops in the observed present day Mediterranean basins (gauging stations), whereas the palaeo‐denudation estimate derived from the sediments over the last glacial period is one to ten times higher than that predicted using cosmogenic or thermochronometer estimates of exhumation. The catchment‐wide denudation rate calculated from deposited solid sediment ranges from 47 to 219 mm kyr?1, which is higher than the estimate from palaeosurface ablation in the proximal part of the source (9–140 mm kyr?1) and lower than the distal, narrow, incised channel of the Golo River (160–475 mm kyr?1). This mismatch raises questions about the investigation of denudation at millennial‐time scale (kyr) and at higher integrating times (Myr) as a reliable tool for determining the effect of climate change on mountain building and on sedimentary basin models.  相似文献   

15.
Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr?1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at ca. 6.3 Ma. A second major provenance shift at ca. 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at ca. 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.  相似文献   

16.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

17.
A two‐dimensional mathematical model considering coupling between a deforming elasto‐visco‐plastic fold–thrust belt, flexural subsidence and diffusional surface processes is solved using the Finite Element Method to investigate how the mechanical behaviour of brittle–ductile wedges influences the development of foreland basins. Results show that, depending mainly on the strength of the basal décollement, two end‐member types of foreland basin are possible. When the basal detachment is relatively strong, the foreland basin system is characterised by: (1) Highly asymmetrical orogen formed by thrusts concentrated in the incoming pro‐wedge. (2) Sedimentation on retro‐side takes place in one major foredeep basin which grows throughout orogen evolution. (3) Deposition on the pro‐side occurs initially in the foredeep, and continues in the wedge‐top before isolated basins are advected towards the orogen core where they become uplifted and exhumed. (4) Most pro‐wedge basins show an upward progression from low altitude, foredeep deposits at the base to high altitude, wedge‐top deposits near the surface. In contrast, when the basal detachment behaves weakly due to the presence of low viscosity material such as salt, the foreland basin system is characterised by (1) Broad, low relief orogen showing little preferential vergence and predominance of folding relative to faulting. (2) Deposition mainly in wedge‐top basins showing growth strata. (3) Many basins are initiated contemporaneously but form discontinuously due to the locus of active deformation jumping back and forth between different structures. Model results successfully reproduce first order observations of deforming brittle–ductile wedges and foreland basins. Moreover, the results support and provide a framework for understanding the existence of two main end‐member foreland basin types, simple and complex, associated with fold–thrust belts whose detachments are relatively strong and weak, respectively.  相似文献   

18.
In recent years, contrasting seismic tomographic images have given rise to an extensive debate about the occurrence and implications of migrating slab detachment beneath southern Italy. One of the most pertinent aspects of this process is the concentration of the slab pull force, and particularly its surface expression in terms of vertical motions and related basin subsidence/uplift. In this study we focused on shallow‐water to continental, Pliocene‐Quaternary basins that formed on top of the Apennine allochthonous wedge after its emplacement onto a large foreland carbonate platform domain (Apulian Platform). Due to the thick‐skinned style of deformation controlling the Pliocene‐Pleistocene stages of continental shortening, a high degree of coupling with the downgoing plate appears to characterize the late tectonic evolution of the southern Apennines. Therefore, the wedge‐top basins analysed in this study, although occurring on the deformed edge of the overriding plate, are capable of recording deep geodynamic processes affecting the slab. Detailed stratigraphic work on these wedge‐top basins points to a progressive SE‐ward migration of basin subsidence from c. 4 to c. 2.8 Ma over a distance of about 140 km along the strike of the Apennine belt. Such a migration is consistent with a redistribution of slab‐pull forces associated with the progressive lateral migration at a mean rate in the range of 12–14 cm y–1 of a slab tear within the down‐going Adriatic lithosphere. These results yield fundamental information on the rates of first‐order geodynamic processes affecting the slab, and on related surface response.  相似文献   

19.
Pro- vs. retro-foreland basins   总被引:1,自引:0,他引:1  
Alpine‐type mountain belts formed by continental collision are characterised by a strong cross‐sectional asymmetry driven by the dominant underthrusting of one plate beneath the other. Such mountain belts are flanked on either side by two peripheral foreland basins, one over the underthrust plate and one over the over‐riding plate; these have been termed pro‐ and retro‐foreland basins, respectively. Numerical modelling that incorporates suitable tectonic boundary conditions, and models orogenesis from growth to a steady‐state form (i.e. where accretionary influx equals erosional outflux), predicts contrasting basin development to these two end‐member basin types. Pro‐foreland basins are characterised by: (1) Accelerating tectonic subsidence driven primarily by the translation of the basin fill towards the mountain belt at the convergence rate. (2) Stratigraphic onlap onto the cratonic margin at a rate at least equal to the plate convergence rate. (3) A basin infill that records the most recent development of the mountain belt with a preserved interval determined by the width of the basin divided by the convergence rate. In contrast, retro‐foreland basins are relatively stable, are not translated into the mountain belt once steady‐state is achieved, and are consequently characterised by: (1) A constant tectonic subsidence rate during growth of the thrust wedge, with zero tectonic subsidence during the steady‐state phase (i.e. ongoing accretion‐erosion, but constant load). (2) Relatively little stratigraphic onlap driven only by the growth of the retro‐wedge. (3) A basin fill that records the entire growth phase of the mountain belt, but only a condensed representation of steady‐state conditions. Examples of pro‐foreland basins include the Appalachian foredeep, the west Taiwan foreland basin, the North Alpine Foreland Basin and the Ebro Basin (southern Pyrenees). Examples of retro‐foreland basins include the South Westland Basin (Southern Alps, New Zealand), the Aquitaine Basin (northern Pyrenees), and the Po Basin (southern European Alps). We discuss how this new insight into the variability of collisional foreland basins can be used to better interpret mountain belt evolution and the hydrocarbon potential of these basins types.  相似文献   

20.
Megafan conglomerates of foreland basins chronicle the combined effect of palaeoclimate conditions, tectonic processes and the flux and granulometric composition of the supplied sediment. However, the architecture of these deposits is seldom uniquely compatible with a single driving force. This problem is illustrated here with a field‐based analysis of the ca. 30–20 Ma‐old Napf deposits in the north Alpine foreland basin which are coeval with a substantial global warming of ca. 6°C during the Late Oligocene. The observed larger grain sizes and a change in fluvial style from wandering to braided could be explained climatically by a shift to drier conditions with sparse vegetation, but would have resulted in less than 400 m of additional accommodation space during the 1 Ma duration of change. Accordingly, a climate scenario alone is also not compatible with rapid sediment accumulation rates of >1000 m Ma?1 recorded at Napf, or with a lack of any remarkable shifts in the Froude number, which would be expected if water discharge patterns changed substantially. Alternatively, flexural downwarping in response to a tectonic pulse could account for the increase in grain size and the change in fluvial style from wandering (more distal facies) to braided (proximal equivalent). However, a third driving force is required to explain the contemporaneous backstepping of the distal gravel front and progradation of the proximal braided facies. We suggest that the erosional hinterland steepened in response to an inferred tectonic pulse, resulting in a more widespread exposure of lithologies with higher erosional resistance, as inferred from an increasing contribution of crystalline constituents in the clast suites. Such a change would result in a larger D50 and a higher clast size variability in the supplied sediment, which in turn would contribute to the observed change from wandering to braided and the related shift in depositional systems. This study highlights the importance of tectonic processes and the role of changing surface lithologies in the source area for explaining variations in megafan construction even in the light of substantial palaeoclimate shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号