共查询到20条相似文献,搜索用时 9 毫秒
1.
Excitation of normal modes by atmospheric turbulence:source of long-period seismic noise 总被引:2,自引:0,他引:2
T. Tanimoto 《Geophysical Journal International》1999,136(2):395-402
2.
3.
4.
A systematic and efficient method of computing normal modes for multilayered half-space 总被引:15,自引:0,他引:15
Xiaofei Chen 《Geophysical Journal International》1993,115(2):391-409
5.
6.
7.
8.
9.
10.
11.
We derive asymptotic formulae for the toroidal and spheroidal eigenfrequencies of a SNREI earth model with two discontinuities, by considering the constructive interference of propagating SH and P-SV body waves. For a model with a smooth solid inner core, fluid outer core and mantle, there are four SH and 10 P-SV ray parameters regimes, each of which must be examined separately. The asymptotic eigenfrequency equations in each of these regimes depend only on the intercept times of the propagating wave types and the reflection and transmission coefficients of the waves at the free surface and the two discontinuities. If the classical geometrical plane-wave reflection and transmission coefficients are used, the final eigenfrequency equations are all real. In general, the asymptotic eigenfrequencies agree extremely well with the exact numerical eigenfrequencies; to illustrate this, we present comparisons for a crustless version of earth model 1066A. 相似文献
12.
13.
14.
15.
16.
Multilayer, spherically stratified, self-gravitating relaxation models with a large number of layers (more than 100) can be dealt with analytically. Relaxation processes are studied for both Heaviside surface loads and tidal forcings. Simulations of the relaxation process of a realistic earth model with an incompressible Maxwell rheology show that models containing about 30 to 40 layers have reached continuum limits on all timescales and for all harmonic degrees up to at least 150 whenever an elastic lithosphere is present, irrespective of the viscosity profile in the mantle. In particular, fine-graded stratification of the shallow layers proves to be important for high harmonic degrees in these models. The models produce correct long-time (fluid) limits. It is shown that differences in the transient behaviour of the various models are due to the applied volume-averaging procedure of the rheological parameters. Our earlier proposed hypothesis that purported shortcomings in the fundamental physics of (discrete) normal-mode theory are artificial consequences of numerical inaccuracies, theoretical misinterpretations and the use of incomplete sets of normal modes is reinforced by the results presented. We show explicitly that the models produce both continuous behaviour resulting from continuous rheological stratifications and discrete behaviour resulting from sharp density contrasts, as at the outer surface and the core-mantle boundary. The differences between volume-averaged models and fixed-boundary contrast models are outlined. Reducing many-layer models with a volume-averaging procedure before employing a normal mode analysis is both economical and highly accurate on all timescales and for all spherical harmonic degrees. The procedure minimizes the chances of missing contributing modes, while using models with more layers will not result in any substantial increase of accuracy. 相似文献
17.
18.
19.
Summary . We present a variety of examples, showing systematic fluctuations as a function of angular order of measured eigenfrequencies for given normal modes of the Earth. The data are single station measurements from the GEOSCOPE network. Such fluctuations are attributed to departures from the lowest order asymptotic expression of the geometrical optics approximation. We derive first-order asymptotic expressions for the location parameter for all three components of the Earth's motion, by a method based on the stationary phase approximation and geometric relations on the unit sphere.
We illustrate the sensitivity of the fluctuations to the different parameters involved (source parameters, epicentral distance, laterally heterogeneous earth model) with synthetic examples corresponding to GEOSCOPE observations. Finally, we show the results of first attempts at inversion, which indicate that, when the fluctuations are taken into account, more accurate estimates of the great circle average eigenfrequencies can be obtained, and additional constraints put on the structure in the neighbourhood of the great circle. 相似文献
We illustrate the sensitivity of the fluctuations to the different parameters involved (source parameters, epicentral distance, laterally heterogeneous earth model) with synthetic examples corresponding to GEOSCOPE observations. Finally, we show the results of first attempts at inversion, which indicate that, when the fluctuations are taken into account, more accurate estimates of the great circle average eigenfrequencies can be obtained, and additional constraints put on the structure in the neighbourhood of the great circle. 相似文献
20.