首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   

2.
Climate change adaptation advantage for African road infrastructure   总被引:1,自引:0,他引:1  
The African continent is facing the potential of a $183.6 billion USD liability to repair and maintain roads damaged from temperature and precipitation changes directly related to predicted climate change through 2100. This cost is strictly to retain the current road inventory. This cost does not include costs associated with impacts to critically needed new roads. In many African countries, limited or non-existent funds for adaptation and mitigation are challenging these countries to identify the threats that are posed by climate change, develop adaptation approaches to the predicted changes, incorporate changes into mid-range and long-term development plans, and secure funding for the proposed and necessary adaptations. Existing studies have attempted to quantify the impact of climate change on infrastructure assets that will be affected by climate change in the coming decades. The current study extends these efforts by specifically addressing the effect of climate change on the African road infrastructure. The study identifies both total costs and opportunity costs of repairing and maintaining infrastructure due to increased stressors from climate change. Proactive and reactive costs are examined for six climate scenarios, with costs ranging, respectively, from an average of $22 million USD to $54 million USD annually per country. A regional analysis shows contrast between impacts in five areas of the continent, with impacts ranging from 22 % opportunity cost to 168 %. These costs have the potential to delay critical infrastructure development on the continent and present a challenge to policy makers balancing short-term needs with long-term planning.  相似文献   

3.
Sediment cores from Lake Titicaca contain proxy records of past lake level and hydrologic change on the South American Altiplano. Large downcore shifts in the isotopic composition of organic carbon, C/N, wt.%Corg, %CaCO3, and % biogenicsilica illustrate the dynamic changes in lake level that occurred during the past 20,000 years. The first cores taken from water depths greater than 50 meters in the northern subbasin of the lake are used to develop and extend the paleolake-level record back to the Last Glacial Maximum (LGM). Quantitative estimates of lake level are developed using transfer functions based on the 13C of modern lacustrine organic sources and the 13C of modern sedimented organic matter from core-tops. Lake level was slightly higher than modern during much of the post-LGM (20,000–13,500 yr BP) and lake water was freshunder the associated outflow conditions. The Pleistocene/Holocene transition (13,500–7,500 yr BP) was a period of gradual regression, punctuated by minor trangressions. Following a brief highstand at about 7250 yr BP, lake level dropped rapidly to 85 m below the modern level, reaching maximum lowstand conditions by 6250 yr BP. Lake level increased rapidly between 5000yr BP and 4000 yr BP, and less rapidly between 4000 yr BP and 1500 yr BP.Lake level remained relatively high throughout the latest Holocene with only minor fluctuations (<12 meters). Orbitally induced changes in solar insolation, coupled with long-term changes in El Niño-Southern Oscillation variability, are the most likely driving forces behind millennial-scale shifts in lake level that reflect regional-scale changes in the moisture balance of the Atlantic-Amazon-Altiplano hydrologic system.  相似文献   

4.
Frank Millerd 《Climatic change》2011,104(3-4):629-652
The higher temperatures of climate change may result in a fall in Great Lakes water levels. For vessels carrying imports into and exports out of the Great Lakes lower lake levels will lead to restrictions on vessel drafts and reductions in vessel cargos, increasing the number of trips and the cost of moving cargo. Estimates of these impacts are derived from simulations of a recent year??s international cargo movements, comparing a base case with no climate change to various climate change scenarios. The impacts vary from a 5% increase in vessel variable operating costs for a climate change scenario representing the possible climate in 2030 to over 22% for a scenario representing a doubling of atmospheric carbon dioxide. Impacts vary by commodity and route. For years of naturally occurring low water the impacts are up to 13% higher for even the most moderate climate change scenario. Climate change may also result in a shorter time of ice cover leading to an extension of the navigation season. Climate change is also expected to increase the threat of damage from aquatic invasive species, possibly leading to further requirements for ships to undertake preventive measures.  相似文献   

5.
Carbon terrestrial sinks are often seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. To determine whether this is true for agriculture, one meta-regression analysis (52 studies, 536 observations) examines the costs of switching from conventional tillage to no-till, while another (51 studies, 374 observations) compares carbon accumulation under the two practices. Costs per ton of carbon uptake are determined by combining the two results. The viability of agricultural carbon sinks is found to vary by region and crop, with no-till representing a low-cost option in some regions (costs of less than $10 per tC), but a high-cost option in others (costs of 100–$400 per tC). A particularly important finding is that no-till cultivation may store no carbon at all if measurements are taken at sufficient depth. In some circumstances no-till cultivation may yield a triple dividend of carbon storage, increased returns and reduced soil erosion, but in many others creating carbon offset credits in agricultural soils is not cost effective because reduced tillage practices store little or no carbon.  相似文献   

6.
Summary High-resolution numerical model simulations have been used to study the local and mesoscale thermal circulations in an Alpine lake basin. The lake (87km2) is situated in the Southern Alps, New Zealand and is located in a glacially excavated rock basin surrounded by mountain ranges that reach 3000m in height. The mesoscale model used (RAMS) is a three-dimensional non-hydrostatic model with a level 2.5 turbulence closure scheme. The model demonstrates that thermal forcing at local (within the basin) and regional (coast-to-basin inflow) scales drive the observed boundary-layer airflow in the lake basin during clear anticyclonic summertime conditions. The results show that the lake can modify (perturb) both the local and regional wind systems. Following sunrise, local thermal circulations dominate, including a lake breeze component that becomes embedded within the background valley wind system. This results in a more divergent flow in the basin extending across the lake shoreline. However, a closed lake breeze circulation is neither observed nor modelled. Modelling results indicate that in the latter part of the day when the mesoscale (coast-to-basin) inflow occurs, the relatively cold pool of lake air in the basin can cause the intrusion to decouple from the surface. Measured data provide qualitative and quantitative support for the model results.  相似文献   

7.
The risk of sea level rise   总被引:3,自引:1,他引:2  
The United Nations Framework Convention on Climate Change requires nations to implement measures for adapting to rising sea level and other effects of changing climate. To decide upon an appropriate response, coastal planners and engineers must weigh the cost of these measures against the likely cost of failing to prepare, which depends on the probability of the sea rising a particular amount.This study estimates such a probability distribution, using models employed by previous assessments, as well as the subjective assessments of twenty climate and glaciology reviewers about the values of particular model coefficients. The reviewer assumptions imply a 50 percent chance that the average global temperature will rise 2 °C, as well as a 5 percent chance that temperatures will rise 4.7 °C by 2100. The resulting impact of climate change on sea level has a 50 percent chance of exceeding 34 cm and a 1% chance of exceeding one meter by the year 2100, as well as a 3 percent chance of a 2 meter rise and a 1 percent chance of a 4 meter rise by the year 2200.The models and assumptions employed by this study suggest that greenhouse gases have contributed 0.5 mm/yr to sea level over the last century. Tidal gauges suggest that sea level is rising about 1.8 mm/yr worldwide, and 2.5–3.0 mm/yr along most of the U.S. Coast. It is reasonable to expect that sea level in most locations will continue to rise more rapidly than the contribution from climate change alone.We provide a set of normalized projections which express the extent to which climate change is likely to accelerate the rate of sea level rise. Those projections suggest that there is a 65 percent chance that sea level will rise 1 mm/yr more rapidly in the next 30 years than it has been rising in the last century. Assuming that nonclimatic factors do not change, there is a 50 percent chance that global sea level will rise 45 cm, and a 1 percent chance of a 112 cm rise by the year 2100; the corresponding estimates for New York City are 55 and 122 cm.Climate change impact assessments concerning agriculture, forests, water resources, and other noncoastal resources should also employ probability-based projections of regional climate change. Results from general circulation models usually provide neither the most likely scenario nor the full range of possible outcomes; probabilistic projections do convey this information. Moreover, probabilistic projections can make use of all the available knowledge, including the views of skeptics; the opinions of those who study ice cores, fossils, and other empirical evidence; and the insights of climate modelers, which may be as useful as the model results themselves.The U.S. Government right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

8.
Bumping against a Gas Ceiling   总被引:1,自引:0,他引:1  
The adoption of physical thresholds as a ceiling for permitted climate change sidesteps contentious issues such as: policy cost, impact valuation, discounting and equity. In this paper I offer some reflections on the concept of tolerable climate change. I also use an integrated climate assessment model (ICAM-3) to demonstrate how uncertainties in our understanding of socioeconomic and earth systems reduce the probability of success in keeping climate change within a pre-defined tolerable range. Finally, I explore the implications of socioeconomic thresholds for welfare loss in pursuit of a climate policy (e.g., tax rebellions). Crossing such regional socioeconomic thresholds will lead to local failures to pursue climate change mitigation policies — increasing the probability of straying beyond the tolerable window of global climate change. Given various uncertainties and the dynamics of the socioeconomic and the earth systems, the odds of success in staying within a climate change window of T 2°C, and T/yr 0.015°C are estimated to be no higher than 25% over the next century. A risk-risk tradeoff approach appears to hold promise, but while adoption of a larger window of tolerance increases the probability of success, it also opens the window specification criteria to contention.  相似文献   

9.
Ing-Marie Gren 《Climatic change》2010,100(3-4):463-484
This paper calculates the impacts of climatic change on cost effective nutrient management under the Water Framework Directive (WFD) for the eutrophic Mälar lake and Stockholm archipelago in south-eastern Sweden. This is carried out for two types of targets: actual nutrient reduction targets and water quality targets as suggested by WFD. Stochastic programming is applied where climatic changes are modelled as impacts on the mean and variability in nutrient loads and water quality. The results indicate significant impacts on abatement costs and associated nutrient policy design for both targets. Climatic change may under favourable conditions ‘solve’ the water quality problem by achieving the predetermined target without any need for policy instruments, but can also generate large increases in cleaning costs and required charge/subsidy schemes for the same target. The results also point to the importance of target setting, where water quality targets are more robust than nutrient reduction targets with respect to achievement under different climate change impacts.  相似文献   

10.
Important findings on the consequences of climate change for agriculture and forestry from the recently completed Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) are reviewed, with emphasis on new knowledge that emerged since the Second Assessment Report (SAR). The State-Pressure-Response-Adaptation model is used to organize the review. The major findings are:
  • Constant or declining food prices are expected for at least the next 25 yr, although food security problems will persist in many developing countries as those countries deal with population increases, political crisis, poor resource endowments, and steady environmental degradation. Most economic model projections suggest that low relative food prices will extend beyond the next 25 yr, although our confidence in these projections erodes farther out into the 21st century.
  • Although deforestation rates may have decreased since the early 1990s, degradation with a loss of forest productivity and biomass has occurred at large spatial scales as a result of fragmentation, non-sustainable practices and infrastructure development.
  • According to United Nations estimates, approximately 23% of all forest and agricultural lands were classified as degraded over the period since World War II.
  • At a worldwide scale, global change pressures (climate change, land-use practices and changes in atmospheric chemistry) are increasingly affecting the supply of goods and services from forests.
  • The most realistic experiments to date – free air experiments in an irrigated environment – indicate that C3 agricultural crops in particular respond favorably to gradually increasing atmospheric CO2 concentrations (e.g., wheat yield increases by an average of 28%), although extrapolation of experimental results to real world production where several factors (e.g., nutrients, temperature, precipitation, and others) are likely to be limiting at one time or another remains problematic. Moreover, little is known of crop response to elevated CO2 in the tropics, as most of the research has been conducted in the mid-latitudes.
  • Research suggests that for some crops, for example rice, CO2 benefits may decline quickly as temperatures warm beyond optimum photosynthetic levels. However, crop plant growth may benefit relatively more from CO2 enrichment in drought conditions than in wet conditions.
  • The unambiguous separation of the relative influences of elevated ambient CO2 levels, climate change responses, and direct human influences (such as present and historical land-use change) on trees at the global and regional scales is still problematic. In some regions such as the temperate and boreal forests, climate change impacts, direct human interventions (including nitrogen-bearing pollution), and the legacy of past human activities (land-use change) appear to be more significant than CO2 fertilization effects. This subject is, however an area of continuing scientific debate, although there does appear to be consensus that any CO2 fertilization effect will saturate (disappear) in the coming century.
  • Modeling studies suggest that any warming above current temperatures will diminish crop yields in the tropics while up to 2–3 °C of warming in the mid-latitudes may be tolerated by crops, especially if accompanied by increasing precipitation. The preponderance of developing countries lies in or near the tropics; this finding does not bode well for food production in those countries.
  • Where direct human pressures do not mask them, there is increasing evidence of the impacts of climate change on forests associated with changes in natural disturbance regimes, growing season length, and local climatic extremes.
  • Recent advances in modeling of vegetation response suggest that transient effects associated with dynamically responding ecosystems to climate change will increasingly dominate over the next century and that during these changes the global forest resource is likely to be adversely affected.
  • The ability of livestock producers to adapt their herds to the physiological stress of climate change appears encouraging due to a variety of techniques for dealing with climate stress, but this issue is not well constrained, in part because of the general lack of experimentation and simulations of livestock adaptation to climate change.
  • Crop and livestock farmers who have sufficient access to capital and technologies should be able to adapt their farming systems to climate change. Substantial changes in their mix of crops and livestock production may be necessary, however, as considerable costs could be involved in this process because investments in learning and gaining experience with different crops or irrigation.
  • Impacts of climate change on agriculture after adaptation are estimated to result in small percentage changes in overall global income. Nations with large resource endowments (i.e., developed countries) will fare better in adapting to climate change than those with poor resource endowments (i.e., developing countries and countries in transition, especially in the tropics and subtropics) which will fare worse. This, in turn, could worsen income disparities between developed and developing countries.
  • Although local forest ecosystems will be highly affected, with potentially significant local economic impacts, it is believed that, at regional and global scales, the global supply of timber and non-wood goods and services will adapt through changes in the global market place. However, there will be regional shifts in market share associated with changes in forest productivity with climate change: in contrast to the findings of the SAR, recent studies suggest that the changes will favor producers in developing countries, possibly at the expense of temperate and boreal suppliers.
  • Global agricultural vulnerability is assessed by the anticipated effects of climate change on food prices. Based on the accumulated evidence of modeling studies, a global temperature rise of greater than 2.5 °C is likely to reverse the trend of falling real food prices. This would greatly stress food security in many developing countries.
  相似文献   

11.
The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-Obukhov-scaled structure parameters (denoted as $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ ) of temperature and humidity. We use observations from eddy-covariance systems operated at three heights (2.5, 50, and 90 m) within the atmospheric surface layer under unstable conditions. The variability of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ depends on instability and on the size of the averaging window over which $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ is calculated. If instability increases, differences in $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ between upward motions (large $C_{s}^2$ ) and downward motions (small $C_{s}^2$ ) increase. The differences are, however, not sufficiently large to result in a bimodal probability density function. If the averaging window size increases, the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ decrease. A linear regression of the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ versus the averaging window size for various stability classes shows an increase of both the offset and slope (in absolute sense) with increasing instability. For temperature, data from the three heights show comparable results. For humidity, in contrast, the offset and slope are larger at 50 and 90 m than at 2.5 m. In the end we discuss how these findings could be used to assess whether observed differences in $C_{s}^2$ along a scintillometer path or aircraft flight leg are just within the range of local variability in $C_{s}^2$ or could be attributed to surface heterogeneity. This is important for the interpretation of data measured above a heterogeneous surface.  相似文献   

12.
A quantitative measure of the rate at which fossil-pollen abundances changed over the last 18 000 years at 18 sites spread across eastern North America distinguishes local from regionally synchronous changes. Abrupt regional changes occurred at most sites in late-glacial time (at 13700, 12 300, and 10000 radiocarbon yr BP) and during the last 1000 years. The record of abrupt late-glacial vegetation changes in eastern North America correlates well with abrupt global changes in ice-sheet volume, mountain snow-lines, North Atlantic deep-water production, atmospheric CO2, and atmospheric dust, although the palynological signal varies from site to site. Changes in vegetation during most of the Holocene, although locally significant, were not regionally synchronous. The analysis reveals non-alpine evidence for Neoglacial/Little Ice Age climate change during the last 1000 years, which was the only time during the Holocene when climate change was of sufficient magnitude to cause a synchronous vegetational response throughout the subcontinent. During the two millennia preceding this widespread synchronous change, the rate of change at all sites was low and the average rate of change was the lowest of the Holocene.Contribution to Clima Locarno Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

13.
Each year, irrigated Saharan- and Australian-desert forests could sequester amounts of atmospheric CO2 at least equal to that from burning fossil fuels. Without any rain, to capture CO2 produced from gasoline requires adding about $1 to the per-gallon pump-price to cover irrigation costs, using reverse osmosis (RO), desalinated, sea water. Such mature technology is economically competitive with the currently favored, untested, power-plant Carbon Capture (and deep underground, or under-ocean) Sequestration (CCS). Afforestation sequesters CO2, mostly as easily stored wood, both from distributed sources (automotive, aviation, etc., that CCS cannot address) and from power plants. Climatological feasibility and sustainability of such irrigated forests, and their potential global impacts are explored using a general circulation model (GCM). Biogeophysical feedback is shown to stimulate considerable rainfall over these forests, reducing desalination and irrigation costs; economic value of marketed, renewable, forest biomass, further reduces costs; and separately, energy conservation also reduces the size of the required forests and therefore their total capital and operating costs. The few negative climate impacts outside of the forests are discussed, with caveats. If confirmed with other GCMs, such irrigated, subtropical afforestation probably provides the best, near-term route to complete control of green-house-gas-induced, global warming.  相似文献   

14.
Summary The response of Lake Victoria basin climate to changes in the lake surface temperatures (LST) has been examined using NCAR-Regional climate model (RegCM2). In the control run uniform lake surface temperature of 24°C was prescribed and the model integrated for four months, starting at the beginning of September, 1988. In the anomaly experiments the LST was perturbed by ±1.5°C, and kept constant during the entire period of the integrations.Simulation results show significant relationship between basin-wide spatial distribution of rainfall and changes in LST. In general during the short rains at warmer/cooler LSTs, significant increase/decrease in the simulated rainfall occurs over the lake surface and surrounding areas. Rainfall exceeding the amount in the control run by more than 50%, particularly over the western, south/southwestern and central parts of the lake is simulated in the run in which the LST is 1.5°C warmer than the control. It is also evident from our results that different parts of the lake basin respond differently to LST changes which is in contrast to the common characterization of the lake basin as a single homogeneous climate regime in many previous studies.In general the results show that regions with largest response to LST anomalies during the short rains are collocated with the ITCZ. In October when the ITCZ is directly located over the lake, the largest response (maximum rainfall) is also located over the same region. As the season progresses and the ITCZ shifts out of the lake into northern Tanzania, the regions of rainfall maxima also shift with it. This appears to explain the unexpected reduction in over-lake rainfall in December in spite of the LST being warmer than control by 1.5°C. We believe this is a direct consequence of the enhanced convection to the south of the lake (over ITCZ) and the tendency of the system to conserve local moisture budget over the lake.  相似文献   

15.
Summary Casual observers of the impacts associated with four recent freezes in Florida's citrus producing areas might be inclined to agree with an assessment by Miami Herald reporters that these freezes had caused the king of citrus to be toppled from its throne, enabling Brazil to take its place. Research on the citrus industry, however, reveals that the impacts of these recent freezes only explain part of the story of the interaction between climate variability and the relationship between the citrus industries of Florida and Brazil. Climate characteristics and their variability have directly as well as indirectly affected the economic competitiveness of citrus producers whose output is in large measure climate-dependent. Climate variability has had direct impacts on Florida's citrus industry by adversely affecting the productivity of citrus groves in some areas, by altering growers' perceptions of freeze probabilities and, occasionally, by suddenly reducing output, thus elevating the price that consumers must pay for that commodity. Indirectly, competition can be affected by climate as a potential producer identifies a weakness in the supply system of an existing industry and seeks to fill the gap.Brazil's involvement in the toppling of King Citrus began not in the early 1980s (as a result of the four freezes in the past six years), but in 1962 as a result of a major freeze in that year, one that sharply increased FCOJ prices by reducing Florida's output. It was then that the climate had an impact on the economic competitiveness of the citrus industry. The records document the steady, almost meteoric, rise in Brazilian FCOJ production and exports. Subsequent freezes only served to abet a process that had been well underway two decades before the recent devastating freezes.As for Florida's ability to continue and perhaps expand its key role in the global citrus economy, the recent freezes do not appear to have fatally damaged that. Rather, those freezes have reawakened Florida's citrus producers to the fact that they are involved in a climate-sensitive industry and have reminded them that the potential for freeze-related problems is never far away. That reawakening has sparked interest in developing hardier citrus varieties, more effective freeze protection methods, and better ways to hedge economically against freeze impacts to the industry.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Highlights of the previous papers in this series are reviewed. Methodology developed for the MINK study has improved the ability of impacts analysis to deal with questions of (1) spatial and temporal variability in climate change; (2) CO2-enrichment effects; (3) the reactions of complex enterprises (farms and forests) to climate change and their ability to adjust and adapt; and (4) integrated effects on current and, more particularly, on future regional economies. The methodology also provides for systematic study of adjustment and adaptation opportunities and of the inter-industry linkages that determine what the overall impacts on the regional economy might be. The analysis shows that with a 1930s dust bowl climate the region-wide economic impacts would be small, after adjustments in affected sectors. In this final paper we consider whether synergistic effects among sectoral impacts and more severe climate change scenarios might alter this conclusion. The MINK analysis, as is, leads to the conclusion that a strong research capacity will be required to ensure that technologies facilitating adaptation to climate change will be available when needed. The capacity to deal with climate change also requires an open economy allowing for free trade and movement of people and for institutions that protect unpriced environmental values. More severe climate scenarios and negative synergisms can only strengthen these conclusions.  相似文献   

17.
In 1900 the city of Chicago began diverting sizable amounts of water from Lake Michigan to move its sewage down the Illinois River. This diversion launched a series of continuing legal controversies involving Illinois as a defendant against claims by the federal government, various lake states, and Canada who wanted the diversion stopped or drastically reduced. During the past 96 years extended dry periods have lowered the lake levels. Using these dry periods as surrogates for future conditions, their effects on the past controversies were examined as analogs for what might occur as a result of climate change from an enhanced Greenhouse effect. The results reveal that changing socioeconomic factors including population growth will likely cause increased water use, and Chicago will seek additional water from the Great Lakes. New priorities for water use will emerge as in the past. Drier future conditions will likely lead to enhanced diversions from the Great Lakes to serve interests in and outside the basin. Future lower lake levels (reflecting a drier climate) will lead to conflicts related to existing and proposed diversions, and these conflicts would be exacerbated by the consequences of global warming. In any event, a warmer, drier climatic regime will challenge existing laws and institutions for dealing with Great Lakes water issues.  相似文献   

18.
Many actions to reduce GHG emissions have wider impacts on health, the economy, and the environment, beyond their role in mitigating climate change. These ancillary impacts can be positive (co-benefits) or negative (conflicts). This article presents the first quantitative review of the wider impacts on health and the environment likely to arise from action to meet the UK's legally-binding carbon budgets. Impacts were assessed for climate measures directed at power generation, energy use in buildings, and industry, transport, and agriculture. The study considered a wide range of health and environmental impacts including air pollution, noise, the upstream impacts of fuel extraction, and the lifestyle benefits of active travel. It was not possible to quantify all impacts, but for those that were monetized the co-benefits of climate action (i.e. excluding climate benefits) significantly outweigh the negative impacts, with a net present value of more than £85 billion from 2008 to 2030. Substantial benefits arise from reduced congestion, pollution, noise, and road accidents as a result of avoided journeys. There is also a large health benefit as a result of increased exercise from walking and cycling instead of driving. Awareness of these benefits could strengthen the case for more ambitious climate mitigation action.

Policy relevance

This article demonstrates that actions to mitigate GHG emissions have significant wider benefits for health and the environment. Including these impacts in cost–benefit analysis would strengthen the case for the UK (and similar countries) to set ambitious emissions reduction targets. Understanding co-benefits and trade-offs will also improve coordination across policy areas and cut costs. In addition, co-benefits such as air quality improvements are often immediate and local, whereas climate benefits may occur on a longer timescale and mainly in a distant region, as well as being harder to demonstrate. Dissemination of the benefits, along with better anticipation of trade-offs, could therefore boost public support for climate action.  相似文献   


19.
The use of shale gas is commonly considered as a low-cost option for meeting ambitious climate policy targets. This article explores global and country-specific effects of increasing global shale gas exploitation on the energy markets, on greenhouse gas emissions, and on mitigation costs. The global techno-economic partial equilibrium model POLES (Prospective Outlook on Long-term Energy Systems) is employed to compare policies which limit global warming to 2°C and baseline scenarios when the availability of shale gas is either high or low. According to the simulation results, a high availability of shale gas has rather small effects on the costs of meeting climate targets in the medium and long term. In the long term, a higher availability of shale gas increases baseline emissions of greenhouse gases for most countries and for the world, and leads to higher compliance costs for most, but not all, countries. Allowing for global trading of emission certificates does not alter these general results. In sum, these findings cast doubt on shale gas’s potential as a low-cost option for meeting ambitious global climate targets.

POLICY RELEVANCE

Many countries with a large shale gas resource base consider the expansion of local shale gas extraction as an option to reduce their GHG emissions. The findings in this article imply that a higher availability of shale gas in these countries might actually increase emissions and mitigation costs for these countries and also for the world. An increase in shale gas extraction may spur a switch from coal to gas electricity generation, thus lowering emissions. At the global level and for many countries, though, this effect is more than offset by a crowding out of renewable and nuclear energy carriers, and by lower energy prices, leading to higher emissions and higher mitigation costs in turn. These findings would warrant a re-evaluation of the climate strategy in most countries relying on the exploitation of shale gas to meet their climate targets.  相似文献   


20.
Are there "thresholds" in greenhouse gas (GHG) concentrations above which associated climate change impacts become economically, socially or environmentally unacceptable? If thresholds exist, then emissions might be limited in such a way that GHG concentrations are not exceeded. Environmental, social, and economic systems should be examined in order to determine these threshold levels. This paper addressed the potential impacts of climate change on the water resources of the Nile River and associated impacts on the Egyptian economy through the use of a recursively dynamic general equilibrium model. The model was used to examine both economy-wide and sectoral impacts, and impacts on social and national policy indicators under various economic growth and climate change scenarios. Macro-economic indicators such as Gross Domestic Product (GDP) showed that strict economic thresholds, characterized by discontinuities in the response function, did not occur. This was because autonomous economic adjustments generated a smooth socioeconomic transition over the 70-year simulation period. The economy underwent a gradual structural transformation, as capital and resources were moved from cropped agricultural to both the livestock and the non-agricultural sectors. Under "wet" climate scenarios, surplus water beyond 75 billion cubic meters (BCM) remained unused, as the marginal value of water dropped to zero and other resource constraints limited agricultural growth. For drier scenarios (below 75 BCM), water was a constraint to agricultural production into the 21 st century, as resources were diverted to less water demanding crops and the livestock and non-agricultural sectors. The reduced water scenarios showed agriculture declining in its total share of GDP, burdening the agricultural wage earner. Egypt increased its dependence on imports to meet food demand, dramatically decreasing grain self-sufficiency, while increasing protein self-sufficiency. If national policy requires a certain level of food self-sufficiency, then these metrics could be used in defining policy-based thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号