首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

2.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

3.
On the interannual variability of surface salinity in the Atlantic   总被引:1,自引:1,他引:0  
The mechanisms controlling the interannual variability of sea surface salinity (SSS) in the Atlantic are investigated using a simulation with the ECHAM4/OPA8 coupled model and, for comparison, the NCEP reanalysis and an observed SSS climatology. Anomalous Ekman advection is found to be as important as the freshwater flux in generating SSS anomalies, in contrast to sea surface temperature (SST) anomalies which are primarily caused by surface heat flux fluctuations. Since the surface heat flux feedback does not damp the SSS anomalies but generally damps existing SST anomalies, SSS anomalies have a larger characteristic time scale. As a result, they are more influenced by the mean currents and the geostrophic variability, which dominate the SSS changes at low frequency over much of the basin. The link between SSS anomalies and the dominant patterns of atmospheric variability in the North Atlantic sector is also discussed. It is shown that the North Atlantic Oscillation generates SSS anomalies much more by Ekman advection than by freshwater exchanges. At least in the coupled model, there is little one-to-one correspondence between the main atmospheric and SSS anomaly patterns, unlike what is found for SST anomalies.  相似文献   

4.
 The interannual variability over the tropical Pacific and a possible link with the mean state or the seasonal cycle is examined in four coupled ocean-atmosphere general circulation models (GCM). Each model is composed of a high-resolution ocean GCM of either the tropical Pacific or near-global oceans coupled to a moderate-resolution atmospheric GCM, without using flux correction. The oceanic subsurface is considered to describe the mean state or the seasonal cycle through the analytical formulations of some potential coupled processes. These coupled processes characterise the zonal gradient of sea surface temperature (hereafter SST), the oceanic vertical gradient of temperature and the equatorial upwelling. The simulated SST patterns of the mean state and the interannual signals are generally too narrow. The grid of the oceanic model could control the structure of the SST interannual signals while the behaviour of the atmospheric model could be important in the link between the oceanic surface and the subsurface. The first SST EOFs are different between the coupled models, however, the second SST EOFs are quite similar and could correspond to the return to the normal state while that of the observations (COADS) could favour the initial anomaly. All the models seem to simulate a similar equatorial wave-like dynamics to return to the normal state. The more the basic state is unstable from the coupled processes point of view, the more the interannual signal are high. It seems that the basic state could control the intensity of the interannual variability. Two models, which have a significant seasonal variation of the interannual variance, also have a significant seasonal variation of the instability with a few months lag. The potential seasonal phase locking of the interannual fluctuations need to be examined in more models to confirm its existence in current tropical GCMs. Received: 30 July 1999 / Accepted: 25 April 2000  相似文献   

5.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

6.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

7.
Observations indicate that recent tropical Pacific decadal climate variability tends to be associated with the extratropical North Pacific through a relay teleconnection of a fast coupled ocean-atmosphere bridge and a slow oceanic tunnel. A coupled ocean-atmosphere model, forced by the observed decadal wind in the extratropical North Pacific, explicitly demonstrates that extratropical decadal sea surface temperature (SST) anomalies may propagate to the tropics through a coupled wind-evaporative-SST (WES) feedback. The WES feedback cannot only lead to a nearly synchronous change of tropical SST, but also force a delayed adjustment of the meridional overturning circulation in the upper ocean to further sustain the tropical SST change. The study further suggests that the extratropical–tropical teleconnection provides a positive feedback to sustain the decadal changes in both the tropical and extratropical North Pacific.  相似文献   

8.
A predictability study of simulated North Atlantic multidecadal variability   总被引:1,自引:1,他引:1  
 The North Atlantic is one of the few places on the globe where the atmosphere is linked to the deep ocean through air–sea interaction. While the internal variability of the atmosphere by itself is only predictable over a period of one to two weeks, climate variations are potentially predictable for much longer periods of months or even years because of coupling with the ocean. This work presents details from the first study to quantify the predictability for simulated multidecadal climate variability over the North Atlantic. The model used for this purpose is the GFDL coupled ocean-atmosphere climate model used extensively for studies of global warming and natural climate variability. This model contains fluctuations of the North Atlantic and high-latitude oceanic circulation with variability concentrated in the 40–60 year range. Oceanic predictability is quantified through analysis of the time-dependent behavior of large-scale empirical orthogonal function (EOF) patterns for the meridional stream function, dynamic topography, 170 m temperature, surface temperature and surface salinity. The results indicate that predictability in the North Atlantic depends on three main physical mechanisms. The first involves the oceanic deep convection in the subpolar region which acts to integrate atmospheric fluctuations, thus providing for a red noise oceanic response as elaborated by Hasselmann. The second involves the large-scale dynamics of the thermohaline circulation, which can cause the oceanic variations to have an oscillatory character on the multidecadal time scale. The third involves nonlocal effects on the North Atlantic arising from periodic anomalous fresh water transport advecting southward from the polar regions in the East Greenland Current. When the multidecadal oscillatory variations of the thermohaline circulation are active, the first and second EOF patterns for the North Atlantic dynamic topography have predictability time scales on the order of 10–20 y, whereas EOF-1 of SST has predictability time scales of 5–7 y. When the thermohaline variability has weak multidecadal power, the Hasselmann mechanism is dominant and the predictability is reduced by at least a factor of two. When the third mechanism is in an extreme phase, the North Atlantic dynamic topography patterns realize a 10–20 year predictability time scale. Additional analysis of SST in the Greenland Sea, in a region associated with the southward propagating fresh water anomalies, indicates the potential for decadal scale predictability for this high latitude region as well. The model calculations also allow insight into regional variations of predictability, which might be useful information for the design of a monitoring system for the North Atlantic. Predictability appears to break down most rapidly in regions of active convection in the high-latitude regions of the North Atlantic. Received: 28 October 1996 / Accepted: 21 March 1997  相似文献   

9.
 Sea surface temperature (SST) and salinity (SSS) time series from four ocean weather stations and data from an integration of the GFDL coupled ocean-atmosphere model are analyzed to test the applicability of local linear stochastic theory to the mixed-layer ocean. According to this theory, mixed-layer variability away from coasts and fronts can be explained as a ‘red noise’ response to the ‘white noise’ forcing by atmospheric disturbances. At one weather station, Papa (northeast Pacific), this stochastic theory can be applied to both salinity and temperature, explaining the relative redness of the SSS spectrum. Similar results hold for a model grid point adjacent to Papa, where the relationships between atmospheric energy and water fluxes and actual changes in SST and SSS are what is expected from local linear stochastic theory. At the other weather stations, this theory cannot adequately explain mixed-layer variability. Two oceanic processes must be taken into account: at Panulirus (near Bermuda), mososcale eddies enhance the observed variability at high frequencies. At Mike and India (North Atlantic), variations in SST and SSS advection, indicated by the coherence and equal persistence of SST and SSS anomalies, contribute to much of the low frequency variability in the model and observations. To achieve a global perspective, TOPEX altimeter data and model results are used to identify regions of the ocean where these mechanisms of variability are important. Where mesoscale eddies are as energetic as at Panulirus, indicated by the TOPEX global distribution of sea level variability, one would expect enhanced variability on short time scales. In regions exhibiting signatures of variability similar to Mike and India, variations in SST and SSS advection should dominate at low frequencies. According to the model, this mode of variability is found in the circumpolar ocean and the northern North Atlantic, where it is associated with the irregular oscillations of the model’s thermohaline circulation. Received: 11 March 1996 / Accepted: 6 September 1996  相似文献   

10.
The inter-basin teleconnection between the North Atlantic and the North Pacific ocean–atmosphere interaction is studied using a coupled ocean–atmosphere general circulation model. In the model, an idealized oceanic temperature anomaly is initiated over the Kuroshio and the Gulf Stream extension region to track the coupled evolution of ocean and atmosphere interaction, respectively. The experiments explicitly demonstrate that both the North Pacific and the North Atlantic ocean–atmosphere interactions are intimately coupled through an inter-basin atmospheric teleconnection. This fast inter-basin communication can transmit oceanic variability between the North Atlantic and the North Pacific through local ocean-to-atmosphere feedbacks. The leading mode of the extratropical atmospheric internal variability plays a dominant role in shaping the hemispheric-scale response forced by oceanic variability over the North Atlantic and Pacific. Modeling results also suggest that a century (two centuries) long observations are necessary for the detection of Pacific response to Atlantic forcings (Atlantic response to Pacific forcing).  相似文献   

11.
利用全球海洋—大气快速耦合模式(Fast Ocean-Atmosphere Model,FOAM),采用模式中的初值方法,研究了湾流区海温再现过程及其对北半球大气环流和气候的影响。FOAM模式很好地模拟了北大西洋湾流区的海温"再现"过程,模式中海面热通量异常与SST异常表现出不同步的响应特征。海面热通量异常在初冬季节达到最大值,而SST异常滞后,在冬季晚期达到最大值,从而在初冬和晚冬对北半球大气环流造成不同的影响。初冬季节北半球大气环流主要受海洋热通量异常的强迫,在北大西洋和北太平洋上空呈现相当正压的异常低压槽响应,北极地区为异常高压脊,类似北极涛动的负位相,可能造成欧洲南部和北非大陆气温偏高,亚洲大陆气温偏低。而晚冬季节北半球大气环流主要受SST异常的驱动,在北大西洋和北太平洋上空表现为相当正压的异常高压脊响应,北极地区为异常低压槽,类似北极涛动的正位相,可能造成欧洲南部和北非大陆气温偏低,亚洲大陆气温偏高,中国东部降水异常偏多30%左右。北太平洋大气环流的异常由北大西洋湾流区海洋热通量和SST异常强迫下游大气环流所激发,进一步通过Rossby驻波的能量频散东传至北太平洋而造成的。  相似文献   

12.
Summary Tropical ocean thermocline variability is studied using gridded data assimilated by an ocean model in the period 1950–2000. The dominant patterns and variability are identified using EOF analysis applied to E–W depth slices of sea temperatures averaged over the tropics. After removing the annual cycle, an east–west ‘see-saw’ with an interannual to decadal rhythm is the leading mode in each of the tropical basins. In the case of the leading mode in the Pacific, the thermocline oscillation forms a dipole structure, but in the (east) Atlantic and (southwest) Indian Ocean there is a single center of action. The interaction of the ocean thermocline and atmospheric Walker circulations is studied through cross-modulus analysis of wavelet-filtered EOF time scores. Our study demonstrates how tropical ocean thermocline variability contributes to zonal circulation anomalies in the atmosphere. The equatorial Pacific thermocline oscillation explains 62 and 53% of the variability of the Pacific and Atlantic zonal overturning circulations, the latter driving convective polarity between North Africa and South America. The Pacific sea-saw leads the Atlantic zonal circulation by a few months.  相似文献   

13.
Summary Interannual variability in the activity of fluctuations with subseasonal time scales is investigated based upon observed data of the extratropical Northern Hemisphere circulation over the recent 38 winters. Their activity is represented in the root mean square (RMS) field of filtered geopotential height in which the fluctuations with time scales between 10 days and a season are retained. The singular value decomposition (SVD) was applied to the covariance matrix between the seasonal mean and RMS fields for the 500-hPa height.The leading SVD mode for the north Pacific represents the strong relationship between the polarity of the Pacific/North American (PNA) pattern in the seasonal-mean anomalies and the amplitude of a meridionally-oriented dipole-like oscillation within the season. It tends to be more active when the seasonal-mean jet stream is strongly diffluent over the central Pacific than when the jet is extended zonally across the Pacific. The leading SVD mode for the north Atlantic is indicative of stronger intraseasonal fluctuations near Greenland in the presence of anticyclonic seasonal-mean anomalies associated with the North Atlantic Oscillation (NAO).The intraseasonal variability in the extratropics is strongly correlated with the underlying sea surface temperature (SST) anomalies, and that in the north Pacific also exhibits significant but rather weak correlation with SST anomalies in the equatorial Pacific. The activity of the atmospheric intraseasonal fluctuations is found to be modulated in accordance with interdecadal variability in the seasonal-mean circulation and SST.On leave from Department of Earth & Planetary Physics, University of Tokyo.With 12 Figures  相似文献   

14.
At least two main oceanic fronts (the subarctic and subtropical fronts) exist in the North Pacific. Especially in the subtropical frontal zone (STFZ), the sea subsurface temperature gradient is significantly larger than that of the surface layer in winter. Subseasonal interaction between the subsurface subtropical front and overlaying atmosphere is revealed by using empirical orthogonal function (EOF) analysis of oceanic temperature gradient. The first EOF mode mainly corresponds to the atmosphere-to-ocean influences. With the enhanced westerly wind, a cold sea surface temperature anomaly (SSTA) appears and then passes down to affect the subsurface ocean. However, the second EOF mode indicates the ocean-to-atmosphere forcing. For the second mode, cold oceanic temperature anomaly generates in the subsurface layer and passes up, which makes the SST gradient increasing. Due to the increasing atmospheric baroclinicity, the enhanced westerly wind leads to more heat fluxes from the ocean to the atmosphere, which results in a colder SSTA and a larger SST gradient in the STFZ. Therefore, a positive ocean-atmosphere feedback begins to maintain in the mid-latitude in winter.  相似文献   

15.
 This study investigated the ocean-atmosphere interaction effect on the winter surface air temperature in Taiwan. Temperature fluctuations in Taiwan and marine East Asia correlated better with a SST dipole in the western North Pacific than the SST in the central/eastern equatorial Pacific. During the warm (cold) winters, a positive (negative) SST anomaly appears in marine East Asia and a negative (positive) SST anomaly appears in the Philippine Sea. The corresponding low-level atmospheric circulation is a cyclonic (anticyclonic) anomaly over the East Asian continent and an anticyclonic (cyclonic) circulation in the Philippine Sea during the warm (cold) winters. Based on the results of both numerical and empirical studies, it is proposed that a vigorous ocean-atmosphere interaction occurring in the western North Pacific modulates the strength of the East Asian winter monsoon and the winter temperature in marine East Asia. The mechanism is described as follows. The near-surface circulation anomalies, which are forced by the local SST anomaly, strengthen (weaken) the northeasterly trade winds in the Philippine Sea and weaken (strengthen) the northeasterly winter monsoon in East Asia during warm (cold) winters. The anomalous circulation causes the SST to fluctuate by modulating the heat flux at the ocean surface. The SST anomaly in turn enhances the anomalous circulation. Such an ocean-atmosphere interaction results in the rapid development of the anomalous circulation in the western North Pacific and the anomalous winter temperature in marine East Asia. This interaction is phase-locked with the seasonal cycle and occurs most efficiently in the boreal winters. Received: 22 October 1999 / Accepted: 5 June 2000  相似文献   

16.
利用大气环流模式模拟北大西洋海温异常强迫响应   总被引:4,自引:1,他引:3  
李建  周天军  宇如聪 《大气科学》2007,31(4):561-570
北大西洋地区的海温异常能够在多大程度上对大气产生影响,一直是一个有争议的问题。作者利用伴随北大西洋涛动出现的海温异常对大气环流模式CAM2.0.1进行强迫,考察了模式在冬季(12月、1月和2月)对三核型海温异常的响应。通过与欧洲中期天气预报中心提供的再分析资料的对比,发现该模式可以通过海温强迫在一定程度上再现具有北大西洋涛动特征的温度场和环流场。在北大西洋及其沿岸地区,模式模拟出了三核型的准正压响应,与经典的北大西洋涛动型大气异常是一致的。模式结果与北大西洋地区大气内部主导模态的差别主要体现在两个方面:一是异常中心位置多偏向于大洋上空,在陆地上的异常响应强度很弱;二是高纬地区对海温异常的响应不显著,没有强迫出与实际的大气模态相对应的异常中心,表明该地区海洋的反馈作用较弱。  相似文献   

17.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

18.
Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.  相似文献   

19.
Interdecadal variability in the North Pacific region is investigated in a 500-y control integration of the Hamburg ECHAM+LSG coupled ocean-atmosphere general circulation model. The spectrum is predominantly red, but a significant peak with a period of about 18 y is detected in the spectrum of sea surface temperature (SST). This peak is shown to be associated with an irregular oscillation that involves both the model ocean and atmosphere. The SST, sea-level pressure, and geopotential height at 500 hPa all undergo a primarily standing oscillation with an extensive monopole structure centered near the date line. The surface anticyclone is situated to the northeast of the warm SST anomaly, and there is a small westward tilt with height; temporal changes are approximately in phase. The anomalous surface heat flux accompanying the warm phase of SST is primarily out of the ocean, but is compensated by anomalous warm advection by surface currents, allowing the SST anomaly to persist. Oceanic thermocline anomalies propagate northward in the western Pacific, and lag the atmosphere indicating a disequilibrium with the atmosphere; sub-surface thermal advection appears to play an important role. A comparison is made between the model's 18-y oscillation and oscillatory components identified in an analysis of the GISST observational SST dataset, which have periods of approximately 6 and roughly 30 y.  相似文献   

20.
Interannual-to-interdecadal ocean-atmosphere interaction in midlatitudes is studied using an idealized coupled model consisting of eddy resolving two-layer quasi-geostrophic oceanic and atmospheric components with a simple diagnostic oceanic mixed layer. The model solutions exhibit structure and variability that resemble qualitatively some aspects of the observed climate variability over the North Atlantic. The atmospheric climatology is characterized by a zonally modulated jet. The single-basin ocean climatology consists of a midlatitude double jet that represents the Gulf Stream and Labrador currents, which are parts of the subtropical and subpolar gyres, respectively. The leading mode of the atmospheric low-frequency variability consists predominantly of meridional displacements of the zonal jet, with a local maximum over the ocean. The first basin-scale mode of sea-surface temperature has a red power spectrum, is largely of one polarity and bears qualitative similarities with the observed interdecadal mode identified by Kushnir. A warm sea-surface temperature anomaly is accompanied by anomalously low atmospheric pressure, an intensified model Gulf Stream and a weakened Labrador current. This mode is found not to be affected significantly by oceanic coupling. In the western part of the basin, this sea-surface temperature pattern is shown to be forced by the slowest components of the surface-wind anomaly through a delayed modulation of the baroclinic time-dependent boundary currents which advect mean SST, with synchronous variations in the two oceanic jets. The response in the east is found to be dominated by local atmospheric forcing. Basin-scale intrinsic oceanic variability consists of a damped oceanic oscillatory mode in the baroclinic flow field that is excited by the atmospheric noise. Its period is around 5.5 years, but it has a negligible influence on the evolution of sea-surface temperature. Important for this mode's excitation is the meridional position of the atmospheric center of action relative to the ocean gyres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号