首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Based on the classification provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), the damage level of buildings impacted by the 2011 Great East Japan tsunami can be separated into six levels (from minor damage to washed away). The objective of this paper is to identify the significant predictor variables and the direction of their potential relationship to the damage level in order to create a predicting formula for damage level. This study used the detailed data of damaged buildings in Ishinomaki city, Miyagi prefecture, Japan, collected by MLIT. The explanatory variables tested included the inundation depth, number of floors, structural material, and function of the building. Ordinal regression was applied to model the relationship between the ordinal outcome variable (damage level) and the predictors. The findings indicated that inundation depth, structural material, and function of building were significantly associated with the damage level. In addition to this new type of model, this research provides a valuable insight into the relative influence of different factors on building damage and suggestions that may help to revise the classification of current standards. This study can contribute to academic tsunami research by assessing the contribution of different variables to the observed damage using new approaches based on statistical analysis and regression. Moreover, practical applications of these results include understanding of the predominant factors driving tsunami damage to structures, implementation of the relevant variables into the proposed, or alternative model in order to improve current damage predictions by taking into account not only inundation depth, but also variables such as structural material and function of building.  相似文献   

2.
Tsunamis are destructive natural phenomena which cause extensive damage to the built environment, affecting the livelihoods and economy of the impacted nations. This has been demonstrated by the tragic events of the Indian Ocean tsunami in 2004, or the Great East Japan tsunami in 2011. Following such events, a few studies have attempted to assess the fragility of the existing building inventory by constructing empirical stochastic functions, which relate the damage to a measure of tsunami intensity. However, these studies typically fit a linear statistical model to the available damage data, which are aggregated in bins of similar levels of tsunami intensity. This procedure, however, cannot deal well with aggregated data, low and high damage probabilities, nor does it result in the most realistic representation of the tsunami-induced damage. Deviating from this trend, the present study adopts the more realistic generalised linear models which address the aforementioned disadvantages. The proposed models are fitted to the damage database, containing 178,448 buildings surveyed in the aftermath of the 2011 Japanese tsunami, provided by the Ministry of Land, Infrastructure Transport and Tourism in Japan. In line with the results obtained in previous studies, the fragility curves show that wooden buildings (the dominant construction type in Japan) are the least resistant against tsunami loading. The diagnostics show that taking into account both the building’s construction type and the tsunami flow depth is crucial to the quality of the damage estimation and that these two variables do not act independently. In addition, the diagnostics reveal that tsunami flow depth estimates low levels of damage reasonably well; however, it is not the most representative measure of intensity of the tsunami for high damage states (especially structural damage). Further research using disaggregated damage data and additional explanatory variables is required in order to obtain reliable model estimations of building damage probability.  相似文献   

3.
Natural Hazards - Structural vulnerability due to tsunami loading can be characterized by a family of fragility curves, which are expressed as lognormal cumulative distributions of the conditional...  相似文献   

4.
The Great East Japan earthquake and tsunami damaged or destroyed many industrial facilities housing or processing hazardous substances, such as refineries, petrochemical facilities and other types of chemical industry. This showed that also generally well prepared countries are at risk of suffering natural hazard triggered technological (Natech) accidents. An analysis of data collected from open sources and through interviews with authorities was performed to understand the main reasons for the industrial damage and downtime as well as the extent of hazardous-materials releases and the associated impact on society. The analysis of the data set confirmed the findings from other studies with respect to main damage and failure modes, as well as hazardous-materials release paths. In addition, gaps in Natech risk management were identified. Based on the data analysis and interviews lessons learned in support of a more far-reaching Natech risk management are presented.  相似文献   

5.
The tsunami of 11th March 2011 was originated at the east coast of Japan and deposited ca.1 cm thick sediment layer along the coast of southwestern Mexico up to a maximum distance of 320 m from the beach. The sedimentological, mineralogical and geochemical characteristics of the sediments deposited during the tsunami (JT) are compared with the pre-tsunami sediments (PRT). JT sediments consist of dominant coarser fractions (>54% of medium to coarse sand), whereas PRT deposits comprise abundant finer fractions (>58% of fine sand). Assemblage of mafic and heavy minerals suggests similar provenance for both. The higher abundance and variation of heavy minerals along with higher concentrations of bromine (Br) and sodium (Na) in the JT deposits reveal the influence of high energy sea waves in transportation of heavy mineral rich coarse sediments onto the coastal lowlands.  相似文献   

6.
In this paper, a grid-based cluster division procedure, in combination with a novel maximum likelihood estimate based on multinomial distribution, is proposed to derive fragility curves for medium- and low-rise reinforced concrete (RC) buildings in Taiwan. This new grid-based method generates higher-quality vulnerability data for reducing the dispersion of datasets than does the district-based method. The medium- and low-rise RC buildings are classified into six typologies according to both the number of floors and the design code, based on the complete building damage records collected after the 1999 Chi-Chi Earthquake in Taiwan. The results of the grid-based method show that the fragility curves are more stable and convergent than those from the district-based method. The numerical results demonstrate that the proposed method can reasonably be implemented for fragility analysis and can be used for assessing seismic risk in the future.  相似文献   

7.
Pinter  Nicholas  Ishiwateri  Mikio  Nonoguchi  Atsuko  Tanaka  Yumiko  Casagrande  David  Durden  Susan  Rees  James 《Natural Hazards》2019,96(3):1429-1436
Natural Hazards - On March 11, 2011, a magnitude MW 9.0 thrust earthquake ruptured the Japan Trench along the northwest coast of Honshu and generated a tsunami that killed 15,894 people, left 2585...  相似文献   

8.
9.
Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.  相似文献   

10.
Coastal vegetation is widely recognized to reduce tsunami damage to people and buildings, and it has been studied recently because it requires relatively little capital investment compared with artificial measures, provides human-friendly beach fronts, and enhances inter-relationships with other ecological systems. However, the tsunami caused by the Great East Japan Earthquake at 14:46 JST on March 11, 2011, with a magnitude of 9.0 and epicenter 129?km east of Sendai, broke most of the sea wall (tsunami gates, large embankments) and caused catastrophic damage to coastal forests in the Tohoku and Kanto districts of Japan. A field survey was conducted to elucidate the critical breaking condition of Japanese coastal pine trees. Tree-trunk breakage was observed when the sea embankment was washed out or when there was no sea embankment and the tree was under strong inertia force or impact force by debris. Even though the trunk bending and breaking phenomena are different, statistical analysis showed that the critical diameters for trunk bending and trunk breaking were not very different. The overturning phenomenon is a little more complex than trunk breaking because the resistive force is a function of the substrate and root anchorage. An equation to determine the critical diameters for trunk bending, trunk breaking, and overturning was derived as a function of tsunami water depth, soil-root strength, and the hydrodynamic parameter (H D ) formulated by Froude number, drag coefficient, and the ratio of impact force to drag force considering the physical mechanisms to resist the tsunami. Trunk bending and breaking were closely related to tsunami water depth and the hydrodynamic parameter (H D ), but tree overturning was found to be more site specific, and the root-soil strength greatly affected the critical value. The proposed critical diameter equation and its coefficient are useful for the design of an inland forest of pine trees that can trap large trees, cars, debris, etc., to its breaking limit. The trapping function should be utilized more in the future designs of inland forests, if possible, on embankments.  相似文献   

11.
12.
The present study examined actigraphically evaluated sleep on the days surrounding the greatest earthquake in Japanese history. The Great East Japan Earthquake occurred unexpectedly on the third day of a 1-week actigraphy measurement. The subjects were eight elderly (73.1 ± 4.3 years, mean ± SD) individuals living in Sendai city, one of the largest cities damaged by the earthquake. All of the subjects wore their actigraph devices until 2 days after the earthquake. The results showed that wake after sleep onset (WASO) was significantly increased (118 ± 29 min, mean ± SE) the first night after the earthquake compared with pre-earthquake values (35 ± 12 min). The subjects described being awoken by frequent aftershocks the first night. This sleep debt was recovered the next day through significant increases in daytime napping and the length of nocturnal sleep periods resulting from earlier bedtimes. An electrical blackout that lasted 2–3 days seemed to be associated with earlier bedtimes by inducing a dark and cold environment. One subject who evacuated to a school gymnasium after the earthquake suffered severely disturbed sleep due to cold temperatures (nocturnal WASO over 180 min). These findings suggest that the environmental factors related to disrupted infrastructure might have considerable impacts on sleep in the first several days after the catastrophic disaster. The findings should be considered for future disaster preparedness initiatives.  相似文献   

13.
Empirical relations between tsunami parameters and underwater eruption energy have been improved, making use of Le Mehaute's theory of explosion-generated water waves. Formulae can be used to estimate underwater eruption characteristics by tsunami wave data. Estimates of energy for some past event have been obtained, in particular, for multiple eruptions of the 1952–1953 Myojinsho volcano, to be E 1015 – 1016 J.  相似文献   

14.
Kono  Tatsuhito  Okuno  Masaya  Yamaura  Kazuho 《Natural Hazards》2022,111(1):139-162

This paper constructs an evacuation decision-making model that takes cognitive dissonance into consideration. The purpose of this construction is to clarify the psychological mechanism for the evacuation behavior of residents during an emergency, based on Akerlof and Dickens (Akerlof and Dickens Am Econ Rev 72:307–319, 1982) "The economic consequences of cognitive dissonance". Specifically, we empirically explore people’s psychological mechanism (e.g., cognitive dissonance) for evacuation behavior when a tsunami disaster occurs. As a result, we show that the level of anxiety depends on the area where residents live and that the average anxiety of residents is mostly correlated with the level of damage of past disasters, and that it is affected also by the ages of residents. Since the level of anxiety largely affects an individual’s evacuation behavior, this result can indicate for what kinds of people intervention and assistance are required based on the level of anxiety. A high level of anxiety basically promotes evacuation. Since our results show that anxiety is increased by the experience of tsunamis, education having people virtually experience tsunamis may increase evacuation rates efficiently.

  相似文献   

15.
Natural Hazards - The 2011 Tohoku-oki tsunami left a characteristic geochemical signature in the sediments of the Misawa harbor on the Aomori coastline (northern Japan), not only in vertical...  相似文献   

16.
Based on the USGS slip distribution data (Finite Fault Model), the vector field of the seafloor deformation in the source of the tsunami that occurred on March 11, 2011, was calculated. The field of seafloor deformation and distribution of depths in the area of the source were used for reconstruction of the initial elevation of the water surface in the tsunami source. It was found that the contribution of horizontal deformations into the amplitude of the initial elevation, into the displaced water volume, and into the potential energy of the initial elevation is at about 20–25%. Within the framework of the linear theory of long waves, numerical simulation of evolution of the initial elevation was made. The simulation results were compared to the signals recorded by the four deep water stations DART which were the nearest to the source. It was shown that account of the horizontal deformation of the seafloor provides a more precise coincidence between the model and real data. Insignificant differences in arrival times of the model and real signals were interpreted as manifestation of phase dispersion and finite duration for the seafloor deformation to form.  相似文献   

17.
There are two fundamental questions this article aims to deal with. First, whether a pre-earthquake strengthening of a large and heterogeneous building stock (the emphasis here is on building types common in S. Europe), is economically feasible or not, and second what is the optimal retrofit level for mitigating the seismic risk. To this purpose contemporary decision making tools, namely cost-benefit and life-cycle cost analyses, are tailored to the needs of the present study, and implemented with the aid of an ad-hoc developed new software application (COBE06). A method for estimating the reduction in structural vulnerability due to retrofit is proposed, as well as a methodology to determine the optimum retrofit level using the fragility curve approach. Finally, the proposed methodology is used in a pilot application that concerns the city of Thessaloniki, and results are drawn for the feasibility of strengthening the reinforced concrete building stock in this city.  相似文献   

18.

As with earthquakes, river floods, water waves, and wind intensities, a tsunami intensity has to be synthetic and comprehensive to be efficient. Tsunami impact is complex because the effects can be felt on the beach, on inundated areas and also at berths and anchors. Within the same local area, a tsunami may severely impact the population on the coast, while its effects may be negligible on marine bodies (boats). Most existing tsunami intensity scales are based either on water elevation or on induced currents. However, it is commonly admitted that both variables should be considered simultaneously. Several existing intensity scales were integrated and were made consistent with each other. An original intensity scale is then derived based on analysis of the interdependency between the maxima of tsunami amplitude and induced current: The dimension of the couple composed by two variables is analyzed, in particular through the derivation of a linear relationship using the long wave theory and the use of a fully nonlinear numerical experiment. Our intensity scale is particularly well adapted to numerical studies, for which the two variables are naturally derived within an entire computational grid. Once the tsunami intensity scale was set up, it was briefly applied to a particular case study: the impact of the Sumatra tsunami, dated December 26, 2004, on the coast of Sri Lanka. Indeed, the tsunami scales proposed herein represent an initial framework of study and can be further improved through new or revisited tsunami observations.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号