首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

2.
Specific effects of tributyltin (TBT) on Crassostrea gigas—valve thickening, and Nucella lapillus—imposex, were measured on local populations, relatively clean unaffected species from England were transferred to the Netherlands and exposed during six weeks to ambient TBT concentrations. Near marinas 50% of the exposed species were sterile after six weeks. In general, no dissolved butyltins were detected in the Rhine and Scheldt estuaries. In 1988 TBT concentrations in marinas ranged from 120 to 4000 ng litre−1. In sediments (fraction <60 μm) and suspended particulate matter TBT concentrations reached up to 1200 ng g−1. TBT concentrations in mussel tissue ranged from <1 to 2300 ng g−1 based on a dry weight. In 1989 concentrations of dissolved TBT ranged from <0·1 to 7200 ng litre−1. In 1989 a seasonal study in the marina of Colijnsplaat showed that dissolved butyltins increased from April to the end of May due to the launching of freshly painted boats, and decreased afterwards.  相似文献   

3.
The magnitude of the exchange flux at the water–sediment interface was determined on the basis of the ammonia concentration gradient at the near-bottom water–interstitial interface and Fick's first law. It was established that in Puck Bay, ammonia almost always passes from the sediment to water. Ammonia flux varied from 5 to 1434 μmol NH4-N m−2 day−1. In total,c. 138·2 tonneammonia year−1pass from sediments of Internal Puck Bay to near-bottom water, the equivalent value for External Puck Bay being 686·9 tonne year−1. In total, about 825 tonne ammonia year−1passes from the sediment to near-bottom water of Puck Bay. In interstitial waters, ammonia occurred in concentrations varying over a wide range (3–1084 μmol NH4-N dm−3).The basic factors affecting the magnitude of ammonia concentration in interstitial waters included: oxidation of organic matter, type of sediment, and inflow of fresh underground waters to the region examined.This paper involves preliminary studies only and constitutes a continuation of the studies on ionic macrocomponents and phosphorus in interstitial waters of Puck Bay undertaken previously.  相似文献   

4.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

5.
A worldwide literature survey of data on cadmium concentration in the soft tissue of the mussel, Mytilus spp., from 591 stations is presented. These stations are from 13 regions. Geometric means for the regions vary from 0·6 to 3·3 μg g−1 (dry weight) for the Barents Sea and the Northeastern Pacific coast, respectively.The averages of seven of these regions, for which reliable cadmium concentrations in seawater were available, were used to calculate a relationship between cadmium concentrations in seawater and mussel soft tissue. The relationship was highly significant: (Cd) mussel (μg g−1, dry weight) = 0·074 (Cd) water (ng litre−1) + 0·39 (P ≤ 0·0005).This model has been successfully applied in the context of the contamination of the Gironde estuary (France). It can also be used to define a water quality criterion for mussel maturing parks consistent with the quality criterion defined for shellfish for human consumption.  相似文献   

6.
β-dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) concentrations were recorded from September 1999 to September 2000 in two geographically close ecosystems, differently affected by eutrophication: the Little Bay of Toulon and the Niel Bay (N.W. Mediterranean Sea, France). Little Bay had higher nutrient levels ([NO3]max. = 30.3 μM; [PO43−]max. = 0.46 μM) and higher chlorophyll a concentrations ([chl a]mean = 2.4 μg/L) compared to Niel Bay ([NO3]max. = 19.7 μM; [PO43−]max. = 0.17 μM; [chl a]mean = 0.4 μg/L). In the two sites, we measured dissolved (DMSPd < 0.2 μm) and particulate DMSP (DMSPp > 0.2 μm) concentrations. The DMSPp was particularly analysed in the 0.2–5, 5–90 and > 90 μm fractions. In the eutrophicated Little Bay, DMSPd concentrations showed a clear seasonality with high values from January to March (124–148 nM). The temporal profile of the DMSPp concentrations was similar, peaking in February–March (38–59 nM). In the less eutrophic Niel Bay, DMSPp concentrations were much lower (6–9 nM in March–April), whereas DMSPd concentrations were relatively high (110–92 nM in February–March). DMS concentrations were elevated from the end of the winter to the spring in Little Bay, ranging from 3 nM in October to 134 nM in March. In the less eutrophic Niel Bay, lower DMS levels were observed, generally not exceeding 20 nM. Each particulate fraction (0.2–5; 5–90; > 90 μm) contained less DMSP in Niel Bay than in Little Bay. At both sites, the 5–90 μm fraction made up most of the DMSPp. This 5–90 μm fraction consisted of microphytoplankton, principally Dinophyceae and Bacillariophyceae. The 5–90 μm biomass calculated from cell biovolumes, was more abundant in Little Bay where the bloom at the end of the winter (165 μg/L in March) occurred at the same time as the DMSP peaks. The estimated DMSPp to biomass ratio for the 5–90 μm fraction was always higher in Little Bay than in Niel Bay. This suggests that the high DMSP levels recorded in Little Bay were not only due to a large Dinophyceae presence in this ecosystem. Indeed, the peak of DMSPp to biomass ratio obtained from cell biovolumes (0.23 nmol/μg in March) was consistent with the proliferation of Alexandrium minutum. This Dinophyceae species may account for between 50% (2894 cells/L) and 63% (4914 cells/L) of the total phytoplankton abundance in the Little Bay of Toulon.  相似文献   

7.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

8.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

9.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

10.
Inorganic phosphorus dynamics were investigated with the use of 32P in the hypertrophic Comacchio lagoons (NE Adriatic) during an extremely dense, quasi-permanent bloom of picocyanobacteria. Concentrations of dissolved inorganic phosphate (DIP) in waters of the blooming lagoons were usually near the detection limit (0.01 μmoles·dm−3). DIP uptake rates by microplankton at near-ambient concentrations (0.01 to 0.1 μmoles·dm−3) were in the range of 9.6 to 16.1 nmoles P·dm−3·min−1, and turnover times were 1.5 to 3 min. The turnover time was >40 h in the eutrophic coastal waters of the adjacent Adriatic Sea. The uptake rate of DIP depended on its initial concentration. In water samples artificially enriched with DIP, the uptake rate rose to its maximum of 0.10 to 0.13 μmoles P·dm−3·min−1 (or 6 to 7 μmoles·dm−3·h−1) when the initial concentration of DIP was elevated to 10 to 20 μmoles·dm−3. The potential capacity of microplankton in the water samples to consume and retain DIP was estimated at 25 μmoles·dm−3. Specific features are discussed of phosphorus metabolism in the anthropogenically transformed lagoon ecosystem with an anomalous food web with few animals.  相似文献   

11.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

12.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

13.
The concentration of carbon disulfide (CS2) in surface water and relevant hydrographic parameters were determined in coastal waters of the eastern USA (Delaware Bay and Chesapeake Bay, including the Potomac River; 7–11 September 1986). The CS2 concentration varied extensively along the cruise track, from 4 to 510 pmol S(CS2) l−1 (n = 103). The average values in estuarine, shelf, and oceanic waters were found to be 118 ± 100 pmol S(CS2) l−1 (n = 54), 51 ± 34 pmol S(CS2) l−1 (n = 14), and 28 ± 12 pmol S(CS2) l−1 (n = 35), respectively. To help interpret the geochemical behavior of CS2, we analyzed the depth distribution of CS2 in the North Atlantic Ocean during an earlier cruise (23 April–2 May 1986). In most cases, these depth profiles show a near-surface maximum at about 10–20 m depth and a relatively steep gradient below this maximum. Based on the distribution pattern in the water column and evidence provided by earlier workers, we propose that diffusion of CS2 from bottom sediments may contribute to CS2 levels in surface seawater. The atmospheric concentration of CS2 was also investigated at some locations during the September cruise. Except during periods when there was a significant anthropogenic input, the concentration of CS2 in air was generally in the range of 4–15 pptv (parts per trillion by volume) with a mean of 10.4 ± 4.0 pptv (n = 10). The calculated sea-to-air emission rates of CS2 at each of our sampling stations show a decreasing trend across estuarine, shelf, and oceanic areas, in agreement with the trend in surface water concentrations.  相似文献   

14.
To investigate the reliability of analytical data for tributyltin (TBT) in sea water, split water samples were distributed to ten laboratories in six countries. The sub-surface samples comprised: (i) an offshore (0·5 km) water sample, (ii) the same sample but spiked with an undisclosed quantity of TBT standard compound (175 ng TBT+ liter−1), and (iii) a sample taken from a yacht marina. The seven acceptable data sets were in good agreement for the spiked sample (178 ± 26 ng TBT+ liter−1) but showed a greater variation in concentrations reported for the yacht marina sample (366 ± 93 ng TBT+ liter−1). Atomic absorption and gas chromatographic-flame photometric detection techniques produced results of similar accuracy and precision. Samples acidified with 1 ml of 10% (v/v) acetic acid appeared stable for more than 2 weeks when stored refrigerated and in darkness. Analyses of the offshore seawater sample revealed TBT contamination (9 ± 7 ng TBT+ liter−1) indicating dispersion of the compound to the shelf waters off Monaco. The spread in values reported by the laboratories demonstrates inherent difficulties in obtaining good precision below approximately 20 ng TBT+ liter−1. This observation is discussed with respect to the setting and enforcing of water quality standards.  相似文献   

15.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

16.
During nine field transplant tests in San Diego Bay (1987–1990), juvenile mussels were exposed to mean concentrations of tributyltin (TBT) in ambient seawater ranging from 2 to 530 ng liter−1 for 12 weeks under natural conditions. A total of 79 cages with 18 mussels each were monitored at 18 different sites. Growth and seawater TBT concentrations were measured weekly or on alternate weeks (biweekly). Mean growth rates ranged from 17 to 505 mg week−1 (0·2 to 2·5 mm week−1). Accumulation of TBT in mussel tissues was measured at the end of each 12-week test exposure and ranged from 0·1 to 3·2 μg g−1 TBT wet weight. The frequency of the measurements and the integration of chemical and biological measurements improved the accuracy of the assessment over more traditional approaches. Growth was significantly related to seawater and tissue TBT. The statistical relationships with growth effects were used to estimate chemical effect zones for TBT in San Diego Bay. Site-specific differences were distinguished by additional statistical analyses and consideration of environmental significance.  相似文献   

17.
Changes in water column nitrate and particulate nitrogen (PN) concentrations and rates of nitrate assimilation at 50°N 145°W were measured over a four-month interval for 1984, 1987 and 1988. Rates of nitrate depletion in the upper 80m of the water column averaged 12mg N m−2d−1, but most of the net depletion occurred during May when rates were high (75mg N m−2d−1) compared to later in the year. Particulate nitrogen (collected on GF/F filters) increased 2- to 3-fold during the month of May and accounted for 30–60% of the net nitrate depletion for May. Mean rates of PN accumulation for the 4-month intervals were 2.4mg N m−2d−1 and accounted for about 20% of the net nitrate depletion. Rates of nitrate assimilation (measured in incubation bottles with 15N) averaged 45.0±4.5mg N m−2d−1 (mean±SD), and appeared to decrease between May and September. A good correspondence between in situ and incubation estimates of nitrate assimilation was found for the 4-month comparison, but not for the month of May when net changes in nitrate concentrations were greatest. Vertical and horizontal inputs of nitrate are about the same order of magnitude as biological removal, thus the high inout of nitrate into the euphotic zone contributed to the continuously high nitrate concentrations in this region. Seasonal changes in nitrate and PN were significant and need to be considered in comparisons of new and export production.  相似文献   

18.
The effect of cadmium was determined on some oxygen-binding characteristics (viz. oxygen affinity, subunit cooperativity, Bohr-effect and temperature effect) of the erythrocruorin of the lugworm, Arenicola marina.Oxygen affinity and subunit cooperativity were measured directly in the blood of Arenicola, both in blood collected from specimens kept under experimental conditions and from specimens obtained from their natural habitat.In the pH range of 7·3–7·8, which closely resembles in vivo blood pH values, cadmium does not affect the oxygen affinity at low concentrations (10−8-10−5 ), and decreases the O2-affinity only slightly at higher concentrations (10−5-2·10−3 ). In the more alkaline pH range, the oxygen affinity increases considerably with increasing cadmium concentrations.Cadmium exerts a facilitating influence on the haem cooperativity at lowest concentrations (10−8-10−7 ) and a minor inhibiting influence at higher concentrations.The oxygen affinity, subunit cooperativity, the Bohr-effect and the temperature effect are pH dependent.The influence of cadmium on the magnitude of the Bohr-effect is pH-dependent.In vivo measurement of the oxygen affinity of Arenicola erythrocruorin gives evidence of a more pronounced inhibition of oxygen binding at increasing cadmium concentrations in the blood, compared with the effect on purified erythrocruorin solutions.  相似文献   

19.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

20.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号