首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

2.
Celestial Mechanics and Dynamical Astronomy - In this paper location of the collinear libration points is investigated numerically, by taking the oblateness of the primaries into consideration, for...  相似文献   

3.
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh’s critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.  相似文献   

4.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

5.
In this paper, the periodic orbits around triangular points in the range of linear stability of the restricted three body problem, when the smaller primary and the test particle have the shape of an oblate spheroid and the larger primary is a radiation emitter with the allowance for the gravitational potential from the belt, is studied. It is observed that the orbits around these points are elliptical and have long and short periodic orbits. The period, orientation, eccentricities, the semi-major and semi-minor axis of the elliptic orbits are found. The study includes some numerical examples in the case of the Sun-Earth and Sun-Jupiter systems.  相似文献   

6.
7.
Utilizing secular perturbing potential due to oblateness, the existence of periodic orbits of the second kind is established through analytic continuation using Delaunay's canonical variables in the planar restricted three-body problem when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion.  相似文献   

8.
Some of the properties of the oblate planet problem are derived. We use the technique of blowing up the singularity to study the collision orbits. We define some families of them in terms of their asymptotic behavior.  相似文献   

9.
We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.  相似文献   

10.
11.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1, m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.  相似文献   

12.
In this paper we consider a restricted equilateral four-body problem where a particle of negligible mass is moving under the Newtonian gravitational attraction of three masses (called primaries) which move on circular orbits around their center of masses such that their configuration is always an equilateral triangle (Lagrangian configuration). We consider the case of two bodies of equal masses, which in adimensional units is the parameter of the problem. We study numerically the existence of families of unstable periodic orbits, whose invariant stable and unstable manifolds are responsible for the existence of homoclinic and heteroclinic connections, as well as of transit orbits traveling from and to different regions. We explore, for three different values of the mass parameter, what kind of transits and energy levels exist for which there are orbits with prescribed itineraries visiting the neighborhood of different primaries.  相似文献   

13.
14.
We study some simple periodic orbits and their bifurcations in the Hamiltonian . We give the forms of the orbits, the characteristics of the main families, and some existence diagrams and stability diagrams. The existence diagram of the family 1a contains regions that are stable (S), simply unstable (U), doubly unstable (DU) and complex unstable (). In the regionsS andU there are lines of equal rotation numberm/n. Along these lines we have bifurcations of families of periodic orbits of multiplicityn. When these lines reach the boundary of the complex unstable region, they are tangent to it. Inside the region there are linesm/n, along which the orbits 1a, describedn-times, are doubly unstable; however, along these lines there are no bifurcations ofn-ple periodic orbits. The families bifurcating from 1a exist only in certain regions of the parameter space (, ). The limiting lines of these regions join at particular points representing collisions of bifurcations. These collisions of bifurcations produce a nonuniqueness of the various families of periodic orbits. The complicated structure of the various bifurcations can be understood by constructing appropriate stability diagrams.  相似文献   

15.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

16.
In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are investigated in the Sun–Earth–Moon–spacecraft restricted four-body problem (RFBP). First of all, the sphere of influence of the Earth–Moon system (SOIEM) is derived. Numerical calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun and the Earth–Moon barycenter act as primaries. The stable manifolds associated with the libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits under the RFBP. The former orbits can pass through the region around libration point away from the SOIEM, but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is defined and analyzed. According to the variant requirement of the space mission, the results obtained can help us select the LGA orbit and the launch window.  相似文献   

17.
Stability regions are identified in the neighborhood of periodic orbits. Features of motion in these regions are investigated. The structure of stability regions in the neighborhood of the Schubart, Moore, and Broucke orbits, the S-orbit, and the Ducati orbit is studied. The following features of motion are identified near these periodic orbits: libration, precession, symmetrization, centralization, bounce (a transition between types of trajectories), ejections, etc.  相似文献   

18.
This paper gives an analytic proof of the existence of Schubart-like orbit, a periodic orbit with singularities in the symmetric collinear four-body problem. In each period of the Schubart-like orbit, there is a binary collision (BC) between the inner two bodies and a simultaneous binary collision (SBC) of the two clusters on both sides of the origin. The system is regularized and the existence is proved by using a “turning point” technique and a continuity argument on differential equations of the regularized Hamiltonian.  相似文献   

19.
This paper shows that there exist two families of periodic solutions of the restrictedN-body problem which are close to large circular orbits of the Kepler problem. These solutions are shown to be of general elliptic type and hence are stable. If the restricted problem admits a symmetry, then there are symmetric periodic solutions which are close to large elliptic orbits of the Kepler problem.  相似文献   

20.
The backbone of the analysis in most dynamical systems is the study of periodic motions, since they greatly assist us to understand the structure of all possible motions. In this paper, we deal with the photogravitational version of the rectilinear restricted four-body problem and we investigate the dynamical behaviour of a small particle that is subjected to both the gravitational attraction and the radiation pressure of three bodies much bigger than the particle, the primaries. These bodies are always in syzygy and two of them have equal masses and are located at equal distances from the third primary. We study the effect of radiation on the distribution of the periodic orbits, their stability, as well as the evolution of the families and their main features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号